These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 9892660)

  • 21. Primary events in dim light vision: a chemical and spectroscopic approach toward understanding protein/chromophore interactions in rhodopsin.
    Fishkin N; Berova N; Nakanishi K
    Chem Rec; 2004; 4(2):120-35. PubMed ID: 15073879
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of the retinylidene Schiff base counterion in rhodopsin in determining wavelength absorbance and Schiff base pKa.
    Sakmar TP; Franke RR; Khorana HG
    Proc Natl Acad Sci U S A; 1991 Apr; 88(8):3079-83. PubMed ID: 2014228
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combined solid state and solution NMR studies of alpha,epsilon-15N labeled bovine rhodopsin.
    Werner K; Lehner I; Dhiman HK; Richter C; Glaubitz C; Schwalbe H; Klein-Seetharaman J; Khorana HG
    J Biomol NMR; 2007 Apr; 37(4):303-12. PubMed ID: 17318366
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Opsin/all-trans-retinal complex activates transducin by different mechanisms than photolyzed rhodopsin.
    Jäger S; Palczewski K; Hofmann KP
    Biochemistry; 1996 Mar; 35(9):2901-8. PubMed ID: 8608127
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pressure-induced isomerization of retinal on bacteriorhodopsin as disclosed by fast magic angle spinning NMR.
    Kawamura I; Degawa Y; Yamaguchi S; Nishimura K; Tuzi S; Saitô H; Naito A
    Photochem Photobiol; 2007; 83(2):346-50. PubMed ID: 17076543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 13C magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of rhodopsin.
    Smith SO; Courtin J; de Groot H; Gebhard R; Lugtenburg J
    Biochemistry; 1991 Jul; 30(30):7409-15. PubMed ID: 1649627
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms of opsin activation.
    Buczyłko J; Saari JC; Crouch RK; Palczewski K
    J Biol Chem; 1996 Aug; 271(34):20621-30. PubMed ID: 8702809
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Constitutive activity of a UV cone opsin.
    Kono M
    FEBS Lett; 2006 Jan; 580(1):229-32. PubMed ID: 16368093
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure and photobleaching process of chicken iodopsin.
    Yoshizawa T; Imamoto Y
    Biophys Chem; 1995; 56(1-2):57-62. PubMed ID: 7662869
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Signaling states of rhodopsin. Formation of the storage form, metarhodopsin III, from active metarhodopsin II.
    Heck M; Schädel SA; Maretzki D; Bartl FJ; Ritter E; Palczewski K; Hofmann KP
    J Biol Chem; 2003 Jan; 278(5):3162-9. PubMed ID: 12427735
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring the molecular mechanism for color distinction in humans.
    Trabanino RJ; Vaidehi N; Goddard WA
    J Phys Chem B; 2006 Aug; 110(34):17230-9. PubMed ID: 16928022
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base.
    Tsutsui K; Imai H; Shichida Y
    Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NMR constraints on the location of the retinal chromophore in rhodopsin and bathorhodopsin.
    Han M; Smith SO
    Biochemistry; 1995 Jan; 34(4):1425-32. PubMed ID: 7827090
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural changes of water molecules during the photoactivation processes in bovine rhodopsin.
    Furutani Y; Shichida Y; Kandori H
    Biochemistry; 2003 Aug; 42(32):9619-25. PubMed ID: 12911303
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isotope labeling of mammalian GPCRs in HEK293 cells and characterization of the C-terminus of bovine rhodopsin by high resolution liquid NMR spectroscopy.
    Werner K; Richter C; Klein-Seetharaman J; Schwalbe H
    J Biomol NMR; 2008 Jan; 40(1):49-53. PubMed ID: 17999150
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The 15N and 13C solid state NMR study of intramolecular hydrogen bond in some Schiff's bases.
    Kamieński B; Schilf W; Dziembowska T; Rozwadowski Z; Szady-Chełmieniecka A
    Solid State Nucl Magn Reson; 2000 Jul; 16(4):285-9. PubMed ID: 10928633
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relocating the Active-Site Lysine in Rhodopsin: 2. Evolutionary Intermediates.
    Devine EL; Theobald DL; Oprian DD
    Biochemistry; 2016 Aug; 55(34):4864-70. PubMed ID: 27486845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solid state 13C and 15N NMR investigations of the N intermediate of bacteriorhodopsin.
    Lakshmi KV; Farrar MR; Raap J; Lugtenburg J; Griffin RG; Herzfeld J
    Biochemistry; 1994 Aug; 33(30):8853-7. PubMed ID: 8043572
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of glutamic acid 113 as the Schiff base proton acceptor in the metarhodopsin II photointermediate of rhodopsin.
    Jäger F; Fahmy K; Sakmar TP; Siebert F
    Biochemistry; 1994 Sep; 33(36):10878-82. PubMed ID: 7916209
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acid-base interactions and secondary structures of poly-L-lysine probed by 15N and 13C solid state NMR and Ab initio model calculations.
    Dos A; Schimming V; Tosoni S; Limbach HH
    J Phys Chem B; 2008 Dec; 112(49):15604-15. PubMed ID: 19367899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.