These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9892760)

  • 1. Human frequency-following responses to two-tone approximations of steady-state vowels.
    Krishnan A
    Audiol Neurootol; 1999; 4(2):95-103. PubMed ID: 9892760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human frequency-following responses: representation of steady-state synthetic vowels.
    Krishnan A
    Hear Res; 2002 Apr; 166(1-2):192-201. PubMed ID: 12062771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human frequency-following response: representation of tonal sweeps.
    Krishnan A; Parkinson J
    Audiol Neurootol; 2000; 5(6):312-21. PubMed ID: 11025331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human frequency-following responses: representation of second formant transitions in normal-hearing and hearing-impaired listeners.
    Plyler PN; Ananthanarayan AK
    J Am Acad Audiol; 2001; 12(10):523-33. PubMed ID: 11791939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aging degrades the neural encoding of simple and complex sounds in the human brainstem.
    Clinard CG; Tremblay KL
    J Am Acad Audiol; 2013; 24(7):590-9; quiz 643-4. PubMed ID: 24047946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human Frequency Following Responses to Filtered Speech.
    Ananthakrishnan S; Grinstead L; Yurjevich D
    Ear Hear; 2021; 42(1):87-105. PubMed ID: 33369591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human Frequency Following Response: Neural Representation of Envelope and Temporal Fine Structure in Listeners with Normal Hearing and Sensorineural Hearing Loss.
    Ananthakrishnan S; Krishnan A; Bartlett E
    Ear Hear; 2016; 37(2):e91-e103. PubMed ID: 26583482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brainstem correlates of concurrent speech identification in adverse listening conditions.
    Yellamsetty A; Bidelman GM
    Brain Res; 2019 Jul; 1714():182-192. PubMed ID: 30796895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human frequency-following response: representation of pitch contours in Chinese tones.
    Krishnan A; Xu Y; Gandour JT; Cariani PA
    Hear Res; 2004 Mar; 189(1-2):1-12. PubMed ID: 14987747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-locked responses to the vowel envelope vary in scalp-recorded amplitude due to across-frequency response interactions.
    Easwar V; Banyard A; Aiken SJ; Purcell DW
    Eur J Neurosci; 2018 Nov; 48(10):3126-3145. PubMed ID: 30240514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subcortical sources dominate the neuroelectric auditory frequency-following response to speech.
    Bidelman GM
    Neuroimage; 2018 Jul; 175():56-69. PubMed ID: 29604459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The representation of steady-state vowel sounds in the temporal discharge patterns of the guinea pig cochlear nerve and primarylike cochlear nucleus neurons.
    Palmer AR; Winter IM; Darwin CJ
    J Acoust Soc Am; 1986 Jan; 79(1):100-13. PubMed ID: 3944336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brainstem correlates of cochlear nonlinearity measured via the scalp-recorded frequency-following response.
    Bidelman GM; Bhagat S
    Neuroreport; 2020 Jul; 31(10):702-707. PubMed ID: 32453027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response properties of the human frequency-following response (FFR) to speech and non-speech sounds: level dependence, adaptation and phase-locking limits.
    Bidelman G; Powers L
    Int J Audiol; 2018 Sep; 57(9):665-672. PubMed ID: 29764252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The possible role of early-stage phase-locked neural activities in speech-in-noise perception in human adults across age and hearing loss.
    Mai G; Howell P
    Hear Res; 2023 Jan; 427():108647. PubMed ID: 36436293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the acoustic and neural distortion product at 2f1-f2 in normal-hearing adults.
    Elsisy H; Krishnan A
    Int J Audiol; 2008 Jul; 47(7):431-8. PubMed ID: 18574781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Envelope and spectral frequency-following responses to vowel sounds.
    Aiken SJ; Picton TW
    Hear Res; 2008 Nov; 245(1-2):35-47. PubMed ID: 18765275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brainstem auditory responses to resolved and unresolved harmonics of a synthetic vowel in quiet and noise.
    Laroche M; Dajani HR; Prévost F; Marcoux AM
    Ear Hear; 2013; 34(1):63-74. PubMed ID: 22814487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vowel decoding from single-trial speech-evoked electrophysiological responses: A feature-based machine learning approach.
    Yi HG; Xie Z; Reetzke R; Dimakis AG; Chandrasekaran B
    Brain Behav; 2017 Jun; 7(6):e00665. PubMed ID: 28638700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Encoding of pitch in the human brainstem is sensitive to language experience.
    Krishnan A; Xu Y; Gandour J; Cariani P
    Brain Res Cogn Brain Res; 2005 Sep; 25(1):161-8. PubMed ID: 15935624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.