BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 9893074)

  • 1. Good maintenance of high-impact activity-induced bone gain by voluntary, unsupervised exercises: An 8-month follow-up of a randomized controlled trial.
    Heinonen A; Kannus P; Sievänen H; Pasanen M; Oja P; Vuori I
    J Bone Miner Res; 1999 Jan; 14(1):125-8. PubMed ID: 9893074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of resistance training on regional and total bone mineral density in premenopausal women: a randomized prospective study.
    Lohman T; Going S; Pamenter R; Hall M; Boyden T; Houtkooper L; Ritenbaugh C; Bare L; Hill A; Aickin M
    J Bone Miner Res; 1995 Jul; 10(7):1015-24. PubMed ID: 7484276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimum frequency of exercise for bone health: randomised controlled trial of a high-impact unilateral intervention.
    Bailey CA; Brooke-Wavell K
    Bone; 2010 Apr; 46(4):1043-9. PubMed ID: 20004758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detraining reverses positive effects of exercise on the musculoskeletal system in premenopausal women.
    Winters KM; Snow CM
    J Bone Miner Res; 2000 Dec; 15(12):2495-503. PubMed ID: 11127215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does previous participation in high-impact training result in residual bone gain in growing girls? One year follow-up of a 9-month jumping intervention.
    Kontulainen SA; Kannus PA; Pasanen ME; Sievänen HT; Heinonen AO; Oja P; Vuori I
    Int J Sports Med; 2002 Nov; 23(8):575-81. PubMed ID: 12439773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of discontinuation of alendronate treatment and exercise on bone mass and physical fitness: 15-month follow-up of a randomized, controlled trial.
    Uusi-Rasi K; Sievänen H; Heinonen A; Kannus P; Vuori I
    Bone; 2004 Sep; 35(3):799-805. PubMed ID: 15336619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A randomized two-year study of the effects of dynamic strength training on muscle strength, disease activity, functional capacity, and bone mineral density in early rheumatoid arthritis.
    Häkkinen A; Sokka T; Kotaniemi A; Hannonen P
    Arthritis Rheum; 2001 Mar; 44(3):515-22. PubMed ID: 11263764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial.
    Fuchs RK; Bauer JJ; Snow CM
    J Bone Miner Res; 2001 Jan; 16(1):148-56. PubMed ID: 11149479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of exercise involving predominantly either joint-reaction or ground-reaction forces on bone mineral density in older women.
    Kohrt WM; Ehsani AA; Birge SJ
    J Bone Miner Res; 1997 Aug; 12(8):1253-61. PubMed ID: 9258756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-specific response of bone to exercise in premenopausal women.
    Winters-Stone KM; Snow CM
    Bone; 2006 Dec; 39(6):1203-9. PubMed ID: 16876495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-impact exercise promotes bone gain in well-trained female athletes.
    Taaffe DR; Robinson TL; Snow CM; Marcus R
    J Bone Miner Res; 1997 Feb; 12(2):255-60. PubMed ID: 9041058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Four years follow-up of bone mineral density change in premenopausal women with systemic lupus erythematosus.
    Uaratanawong S; Deesomchok U; Hiransuttikul N; Uaratanawong S
    J Med Assoc Thai; 2004 Nov; 87(11):1374-9. PubMed ID: 15825716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of high-impact exercise on bone mineral density: a randomized controlled trial in premenopausal women.
    Vainionpää A; Korpelainen R; Leppäluoto J; Jämsä T
    Osteoporos Int; 2005 Feb; 16(2):191-7. PubMed ID: 15221206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced bone mineral density in men with a previous femur fracture.
    Kannus P; Järvinen M; Sievänen H; Järvinen TA; Oja P; Vuori I
    J Bone Miner Res; 1994 Nov; 9(11):1729-36. PubMed ID: 7863824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of unilateral strength training and detraining on bone mineral mass and estimated mechanical characteristics of the upper limb bones in young women.
    Heinonen A; Sievänen H; Kannus P; Oja P; Vuori I
    J Bone Miner Res; 1996 Apr; 11(4):490-501. PubMed ID: 8992880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of high-impact aerobics and strength training on BMD in young women aged 20-35 years.
    Liang MT; Braun W; Bassin SL; Dutto D; Pontello A; Wong ND; Spalding TW; Arnaud SB
    Int J Sports Med; 2011 Feb; 32(2):100-8. PubMed ID: 21165807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of vibration therapy on bone mineral density in postmenopausal women with osteoporosis.
    Ruan XY; Jin FY; Liu YL; Peng ZL; Sun YG
    Chin Med J (Engl); 2008 Jul; 121(13):1155-8. PubMed ID: 18710630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-specific effects of strength training on bone structure and geometry of ultradistal radius in postmenopausal women.
    Adami S; Gatti D; Braga V; Bianchini D; Rossini M
    J Bone Miner Res; 1999 Jan; 14(1):120-4. PubMed ID: 9893073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of impact exercise and its intensity on bone geometry at weight-bearing tibia and femur.
    Vainionpää A; Korpelainen R; Sievänen H; Vihriälä E; Leppäluoto J; Jämsä T
    Bone; 2007 Mar; 40(3):604-11. PubMed ID: 17140871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pattern of periprosthetic bone remodeling around stable uncemented tapered hip stems: a prospective 84-month follow-up study and a median 156-month cross-sectional study with DXA.
    Aldinger PR; Sabo D; Pritsch M; Thomsen M; Mau H; Ewerbeck V; Breusch SJ
    Calcif Tissue Int; 2003 Aug; 73(2):115-21. PubMed ID: 14565592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.