BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 9893262)

  • 1. Signal transduction by transforming growth factor-beta: a cooperative paradigm with extensive negative regulation.
    Engel ME; Datta PK; Moses HL
    J Cell Biochem Suppl; 1998; 30-31():111-22. PubMed ID: 9893262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal transduction by transforming growth factor-β: A cooperative paradigm with extensive negative regulation.
    Engel ME; Datta PK; Moses HL
    J Cell Biochem; 1998; 72 Suppl 30-31(S30-31):111-122. PubMed ID: 29345828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crossing Smads.
    Wrana JL
    Sci STKE; 2000 Mar; 2000(23):re1. PubMed ID: 11752591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Signaling pathways of transforming growth factor beta family members].
    Zimowska M
    Postepy Biochem; 2006; 52(4):360-6. PubMed ID: 17536504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of transforming growth factor-beta signaling.
    Zhu HJ; Burgess AW
    Mol Cell Biol Res Commun; 2001 Nov; 4(6):321-30. PubMed ID: 11703090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory mechanisms for transforming growth factor beta as an autocrine inhibitor in human hepatocellular carcinoma: implications for roles of smads in its growth.
    Matsuzaki K; Date M; Furukawa F; Tahashi Y; Matsushita M; Sugano Y; Yamashiki N; Nakagawa T; Seki T; Nishizawa M; Fujisawa J; Inoue K
    Hepatology; 2000 Aug; 32(2):218-27. PubMed ID: 10915727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of specific gene mutations in the transforming growth factor-beta signal transduction pathway in human ovarian cancer.
    Wang D; Kanuma T; Mizunuma H; Takama F; Ibuki Y; Wake N; Mogi A; Shitara Y; Takenoshita S
    Cancer Res; 2000 Aug; 60(16):4507-12. PubMed ID: 10969799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-beta: implications for carcinogenesis.
    Javelaud D; Mauviel A
    Oncogene; 2005 Aug; 24(37):5742-50. PubMed ID: 16123807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TGF-beta receptors, in a Smad-independent manner, are required for terminal skeletal muscle differentiation.
    Droguett R; Cabello-Verrugio C; Santander C; Brandan E
    Exp Cell Res; 2010 Sep; 316(15):2487-503. PubMed ID: 20471380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mouse embryonic stem cells with aberrant transforming growth factor beta signalling exhibit impaired differentiation in vitro and in vivo.
    Goumans MJ; Ward-van Oostwaard D; Wianny F; Savatier P; Zwijsen A; Mummery C
    Differentiation; 1998 Jul; 63(3):101-13. PubMed ID: 9697304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fermentable metabolite of Zymomonas mobilis controls collagen reduction in photoaging skin by improving TGF-beta/Smad signaling suppression.
    Tanaka H; Yamaba H; Kosugi N; Mizutani H; Nakata S
    Arch Dermatol Res; 2008 Apr; 300 Suppl 1():S57-64. PubMed ID: 18060420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transforming growth factor beta signaling is disabled early in human endometrial carcinogenesis concomitant with loss of growth inhibition.
    Parekh TV; Gama P; Wen X; Demopoulos R; Munger JS; Carcangiu ML; Reiss M; Gold LI
    Cancer Res; 2002 May; 62(10):2778-90. PubMed ID: 12019154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TGF-beta family signal transduction in Drosophila development: from Mad to Smads.
    Raftery LA; Sutherland DJ
    Dev Biol; 1999 Jun; 210(2):251-68. PubMed ID: 10357889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New regulatory mechanisms of TGF-beta receptor function.
    Kang JS; Liu C; Derynck R
    Trends Cell Biol; 2009 Aug; 19(8):385-94. PubMed ID: 19648010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transforming growth factor-beta signaling in cancer.
    Rich J; Borton A; Wang X
    Microsc Res Tech; 2001 Feb; 52(4):363-73. PubMed ID: 11170295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The GS domain of the transforming growth factor-beta type I receptor is important in signal transduction.
    Franzén P; Heldin CH; Miyazono K
    Biochem Biophys Res Commun; 1995 Feb; 207(2):682-9. PubMed ID: 7864860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand-induced dimerization of the extracellular domain of the TGF-beta receptor type II.
    Letourneur O; Goetschy JF; Horisberger M; Grütter MG
    Biochem Biophys Res Commun; 1996 Jul; 224(3):709-16. PubMed ID: 8713111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activin type II receptor restoration in ACVR2-deficient colon cancer cells induces transforming growth factor-beta response pathway genes.
    Deacu E; Mori Y; Sato F; Yin J; Olaru A; Sterian A; Xu Y; Wang S; Schulmann K; Berki A; Kan T; Abraham JM; Meltzer SJ
    Cancer Res; 2004 Nov; 64(21):7690-6. PubMed ID: 15520171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TGF-beta signaling, Smads, and tumor suppressors.
    Padgett RW; Das P; Krishna S
    Bioessays; 1998 May; 20(5):382-90. PubMed ID: 9670811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divergence and convergence of TGF-beta/BMP signaling.
    Miyazono K; Kusanagi K; Inoue H
    J Cell Physiol; 2001 Jun; 187(3):265-76. PubMed ID: 11319750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.