BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 9893269)

  • 1. Nucleosome and chromatin structures and functions.
    Bradbury EM
    J Cell Biochem Suppl; 1998; 30-31():177-84. PubMed ID: 9893269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Structure of chromatin. I: Levels of DNA organization in the nucleus; nucleosome and chromatin fibres].
    Santisteban MS
    Pathol Biol (Paris); 1994 Nov; 42(9):868-83. PubMed ID: 7753597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleosomal anatomy--where are the histones?
    Pruss D; Hayes JJ; Wolffe AP
    Bioessays; 1995 Feb; 17(2):161-70. PubMed ID: 7748166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleosome and chromatin fiber dynamics.
    Luger K; Hansen JC
    Curr Opin Struct Biol; 2005 Apr; 15(2):188-96. PubMed ID: 15837178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico approaches reveal the potential for DNA sequence-dependent histone octamer affinity to influence chromatin structure in vivo.
    Fraser RM; Allan J; Simmen MW
    J Mol Biol; 2006 Dec; 364(4):582-98. PubMed ID: 17027853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Position and orientation of the globular domain of linker histone H5 on the nucleosome.
    Zhou YB; Gerchman SE; Ramakrishnan V; Travers A; Muyldermans S
    Nature; 1998 Sep; 395(6700):402-5. PubMed ID: 9759733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for the in vitro reconstitution of a defined "30 nm" chromatin fibre containing stoichiometric amounts of the linker histone.
    Huynh VA; Robinson PJ; Rhodes D
    J Mol Biol; 2005 Feb; 345(5):957-68. PubMed ID: 15644197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone tails modulate nucleosome mobility and regulate ATP-dependent nucleosome sliding by NURF.
    Hamiche A; Kang JG; Dennis C; Xiao H; Wu C
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14316-21. PubMed ID: 11724935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two DNA-binding sites on the globular domain of histone H5 are required for binding to both bulk and 5 S reconstituted nucleosomes.
    Duggan MM; Thomas JO
    J Mol Biol; 2000 Nov; 304(1):21-33. PubMed ID: 11071807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of interactions between nucleosome arrays mediated by specific core histone tail domains.
    Kan PY; Hayes JJ
    Methods; 2007 Mar; 41(3):278-85. PubMed ID: 17309837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray structure of a tetranucleosome and its implications for the chromatin fibre.
    Schalch T; Duda S; Sargent DF; Richmond TJ
    Nature; 2005 Jul; 436(7047):138-41. PubMed ID: 16001076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rules and regulation in the primary structure of chromatin.
    Rando OJ; Ahmad K
    Curr Opin Cell Biol; 2007 Jun; 19(3):250-6. PubMed ID: 17466507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleosome positioning in relation to nucleosome spacing and DNA sequence-specific binding of a protein.
    Pusarla RH; Vinayachandran V; Bhargava P
    FEBS J; 2007 May; 274(9):2396-410. PubMed ID: 17419736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Getting into chromatin: how do transcription factors get past the histones?
    Morse RH
    Biochem Cell Biol; 2003 Jun; 81(3):101-12. PubMed ID: 12897843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of histone tails from nucleosome dissects the physical mechanisms of salt-induced aggregation, linker histone H1-induced compaction, and 30-nm fiber formation of the nucleosome array.
    Hizume K; Nakai T; Araki S; Prieto E; Yoshikawa K; Takeyasu K
    Ultramicroscopy; 2009 Jul; 109(8):868-73. PubMed ID: 19328628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural dynamics of nucleosome core particle: comparison with nucleosomes containing histone variants.
    Ramaswamy A; Bahar I; Ioshikhes I
    Proteins; 2005 Feb; 58(3):683-96. PubMed ID: 15624215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of nucleosome phasing sequences and DNA topology on nucleosome spacing.
    Blank TA; Becker PB
    J Mol Biol; 1996 Jul; 260(1):1-8. PubMed ID: 8676389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of maize chromatin-associated HMG proteins with mononucleosomes: role of core and linker histones.
    Lichota J; Grasser KD
    Biol Chem; 2003 Jul; 384(7):1019-27. PubMed ID: 12956418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometrical, conformational and topological restraints in regular nucleosome compaction in chromatin.
    Scipioni A; Turchetti G; Morosetti S; De Santis P
    Biophys Chem; 2010 May; 148(1-3):56-67. PubMed ID: 20236753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A core nucleosome surface crucial for transcriptional silencing.
    Park JH; Cosgrove MS; Youngman E; Wolberger C; Boeke JD
    Nat Genet; 2002 Oct; 32(2):273-9. PubMed ID: 12244315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.