BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 9893455)

  • 21. The influence of nitric oxide synthase 1 on blood flow and interstitial nitric oxide in the kidney.
    Kakoki M; Zou AP; Mattson DL
    Am J Physiol Regul Integr Comp Physiol; 2001 Jul; 281(1):R91-7. PubMed ID: 11404282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Angiotensin II and nitric oxide in neural control of intrarenal blood flow.
    Rajapakse NW; Sampson AK; Eppel GA; Evans RG
    Am J Physiol Regul Integr Comp Physiol; 2005 Sep; 289(3):R745-54. PubMed ID: 15890788
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of reactive oxygen species and nitric oxide in the neural control of intrarenal haemodynamics in anaesthetized normotensive rats.
    Ahmeda AF; Rae MG; Johns EJ
    Acta Physiol (Oxf); 2013 Oct; 209(2):156-66. PubMed ID: 23910436
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of losartan on renal microvasculature during chronic inhibition of nitric oxide visualized by micro-CT.
    Fortepiani LA; Ruiz MC; Passardi F; Bentley MD; Garcia-Estan J; Ritman EL; Romero JC
    Am J Physiol Renal Physiol; 2003 Nov; 285(5):F852-60. PubMed ID: 12837684
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of nitric oxide in the chronic phase of two-kidney, one clip renovascular hypertension.
    Sigmon DH; Beierwaltes WH
    Hypertension; 1998 Feb; 31(2):649-56. PubMed ID: 9461236
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of specific T-type calcium channel blocker R(-) efonidipine in the regulation of renal medullary circulation.
    Hu C; Mori T; Lu Y; Guo Q; Sun Y; Yoneki Y; Ohsaki Y; Nakamichi T; Oba I; Sato E; Ogawa S; Dickinson BC; Chang CJ; Miyata T; Sato H; Ito S
    J Hypertens; 2012 Aug; 30(8):1620-31. PubMed ID: 22688264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prostaglandins but not nitric oxide protect renal medullary perfusion in anaesthetised rats receiving angiotensin II.
    BadzyƄska B; Grzelec-Mojzesowicz M; Sadowski J
    J Physiol; 2003 May; 548(Pt 3):875-80. PubMed ID: 12640010
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cellular transport of l-arginine determines renal medullary blood flow in control rats, but not in diabetic rats despite enhanced cellular uptake capacity.
    Persson P; Fasching A; Teerlink T; Hansell P; Palm F
    Am J Physiol Renal Physiol; 2017 Feb; 312(2):F278-F283. PubMed ID: 27927650
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of nitric oxide in the control of the renal medullary circulation.
    Mattson DL; Lu S; Cowley AW
    Clin Exp Pharmacol Physiol; 1997 Aug; 24(8):587-90. PubMed ID: 9269532
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of chronic renal medullary nitric oxide inhibition on blood pressure.
    Mattson DL; Lu S; Nakanishi K; Papanek PE; Cowley AW
    Am J Physiol; 1994 May; 266(5 Pt 2):H1918-26. PubMed ID: 8203591
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Renal effects of omapatrilat and captopril in salt-loaded, nitric oxide-deficient rats.
    Ying L; Flamant M; Vandermeersch S; Boffa JJ; Chatziantoniou C; Dussaule JC; Chansel D
    Hypertension; 2003 Nov; 42(5):937-44. PubMed ID: 14569001
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of nitric oxide in short-term and prolonged effects of angiotensin II on renal hemodynamics.
    Deng X; Welch WJ; Wilcox CS
    Hypertension; 1996 May; 27(5):1173-9. PubMed ID: 8621213
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Renoprotective effects of nitric oxide in angiotensin II-induced hypertension in the rat.
    Chin SY; Wang CT; Majid DS; Navar LG
    Am J Physiol; 1998 May; 274(5):F876-82. PubMed ID: 9612324
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of nitric oxide inhibition on kidney function in experimental renovascular hypertension.
    Dedeoglu IO; Springate JE
    Clin Exp Hypertens; 2001 Apr; 23(3):267-75. PubMed ID: 11339692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of nitric oxide synthesis blockade and angiotensin II on blood flow and spontaneous vasomotion in the rat cerebral microcirculation.
    Morita-Tsuzuki Y; Bouskela E; Hardebo JE
    Acta Physiol Scand; 1993 Aug; 148(4):449-54. PubMed ID: 8213199
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nitric oxide inhibition and renal alterations.
    Jover B; Mimran A
    J Cardiovasc Pharmacol; 2001 Nov; 38 Suppl 2():S65-70. PubMed ID: 11811381
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Renal hemodynamic effect of angiotensin II type 2 receptor].
    Hamada K
    Nihon Jinzo Gakkai Shi; 2001; 43(1):28-34. PubMed ID: 11218315
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitric oxide regulation of lingual blood flow in the rat.
    Roberts ZV; Koss MC
    Nitric Oxide; 2001 Jun; 5(3):271-7. PubMed ID: 11384200
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of L-arginine uptake mechanisms in renal blood flow responses to angiotensin II in rats.
    Rajapakse NW; Mattson DL
    Acta Physiol (Oxf); 2011 Nov; 203(3):391-400. PubMed ID: 21649863
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of basally synthesized nitric oxide in modulating the renal vasoconstrictor action of angiotensin II.
    Aki Y; Tomohiro A; Nishiyama A; Kiyomoto K; Kimura S; Abe Y
    Hypertens Res; 1997 Dec; 20(4):251-6. PubMed ID: 9453259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.