BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 9893455)

  • 41. Role of nitric oxide in modulating the vasoconstrictor actions of angiotensin II in preglomerular and postglomerular vessels in dogs.
    Schnackenberg CG; Wilkins FC; Granger JP
    Hypertension; 1995 Dec; 26(6 Pt 2):1024-9. PubMed ID: 7498961
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The role of intrarenal nitric oxide in the natriuretic response to dopamine-receptor activation.
    Venkatakrishnan U; Chen C; Lokhandwala MF
    Clin Exp Hypertens; 2000 Apr; 22(3):309-24. PubMed ID: 10803736
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of nitric oxide in maintenance of basal anterior choroidal blood flow in rats.
    Koss MC
    Invest Ophthalmol Vis Sci; 1998 Mar; 39(3):559-64. PubMed ID: 9501867
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nitric oxide buffers renal medullary vasoconstriction induced by prostaglandins synthesis blockade.
    Nakanishi K; Chinen A; Saito Y; Hamada K; Hara N; Nagai Y
    Hypertens Res; 2001 Nov; 24(6):699-704. PubMed ID: 11768730
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of nitric oxide in long-term angiotensin II-induced renal vasoconstriction.
    Manning RD; Hu L; Mizelle HL; Granger JP
    Hypertension; 1993 Jun; 21(6 Pt 2):949-55. PubMed ID: 8505105
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Control of arterial blood pressure and renal sodium excretion by nitric oxide synthase in the renal medulla.
    Mattson DL; Wu F
    Acta Physiol Scand; 2000 Jan; 168(1):149-54. PubMed ID: 10691793
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Arginine vasopressin-mediated stimulation of nitric oxide within the rat renal medulla.
    Park F; Zou AP; Cowley AW
    Hypertension; 1998 Nov; 32(5):896-901. PubMed ID: 9822450
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Renal and vascular consequences of the chronic nitric oxide synthase inhibition. Effects of antihypertensive drugs.
    Navarro-Cid J; Maeso R; Rodrigo E; Muñoz-García R; Ruilope LM; Lahera V; Cachofeiro V
    Am J Hypertens; 1996 Nov; 9(11):1077-83. PubMed ID: 8931832
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Renal tissue NO and intrarenal haemodynamics during experimental variations of NO content in anaesthetised rats.
    Grzelec-Mojzesowicz M; Sadowski J
    J Physiol Pharmacol; 2007 Mar; 58(1):149-63. PubMed ID: 17440233
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Salt-sensitive hypertension in conscious rats induced by chronic nitric oxide blockade.
    Nakanishi K; Hara N; Nagai Y
    Am J Hypertens; 2002 Feb; 15(2 Pt 1):150-6. PubMed ID: 11863250
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interactions between angiotensin and nitric oxide in the renal response to volume expansion.
    Llinás MT; González JD; Salazar FJ
    Am J Physiol; 1995 Sep; 269(3 Pt 2):R504-10. PubMed ID: 7573549
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of nitric oxide in angiotensin IV-induced increases in cerebral blood flow.
    Kramár EA; Krishnan R; Harding JW; Wright JW
    Regul Pept; 1998 Jun; 74(2-3):185-92. PubMed ID: 9712180
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of nitric oxide in modulating the long-term renal and hypertensive actions of norepinephrine.
    Granger J; Schnackenberg C; Novak J; Tucker B; Miller T; Morgan S; Kassab S
    Hypertension; 1997 Jan; 29(1 Pt 2):205-9. PubMed ID: 9039103
    [TBL] [Abstract][Full Text] [Related]  

  • 54. N-acetylcysteine ameliorates renal microcirculation: studies in rats.
    Heyman SN; Goldfarb M; Shina A; Karmeli F; Rosen S
    Kidney Int; 2003 Feb; 63(2):634-41. PubMed ID: 12631128
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The renal medulla and hypertension.
    Cowley AW; Mattson DL; Lu S; Roman RJ
    Hypertension; 1995 Apr; 25(4 Pt 2):663-73. PubMed ID: 7721413
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nitric oxide and prostanoids protect the renal outer medulla from radiocontrast toxicity in the rat.
    Agmon Y; Peleg H; Greenfeld Z; Rosen S; Brezis M
    J Clin Invest; 1994 Sep; 94(3):1069-75. PubMed ID: 8083347
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of nitric oxide in modulating the chronic renal and arterial pressure responses to angiotensin II.
    Schnackenberg C; Tucker B; Pigg K; Granger J
    Am J Hypertens; 1997 Feb; 10(2):226-9. PubMed ID: 9037333
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evolution of chronic nitric oxide inhibition hypertension: relationship to renal function.
    Qiu C; Muchant D; Beierwaltes WH; Racusen L; Baylis C
    Hypertension; 1998 Jan; 31(1):21-6. PubMed ID: 9449385
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nitric oxide mediates redistribution of intrarenal blood flow during bacteremia.
    Garrison RN; Wilson MA; Matheson PJ; Spain DA
    J Trauma; 1995 Jul; 39(1):90-6; discussion 96-7. PubMed ID: 7636915
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interactions of the renin-angiotensin system and alpha-1 adrenoceptors on renal hemodynamics in healthy and acute renal failure rats: the role of nitric oxide.
    Ajayi AAL ; Hercule HC; Pamugo J; Dixon D; Oyekan AO
    Blood Press; 2001; 10(4):238-46. PubMed ID: 11800063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.