These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 9893838)
1. Spatial and temporal aspects of infant color vision. Teller DY Vision Res; 1998 Nov; 38(21):3275-82. PubMed ID: 9893838 [TBL] [Abstract][Full Text] [Related]
2. Infants code the direction of chromatic quadrature motion. Lia B; Dobkins KR; Palmer J; Teller DY Vision Res; 1999 May; 39(10):1783-94. PubMed ID: 10343870 [TBL] [Abstract][Full Text] [Related]
3. Infant color vision: temporal contrast sensitivity functions for chromatic (red/green) stimuli in 3-month-olds. Dobkins KR; Lia B; Teller DY Vision Res; 1997 Oct; 37(19):2699-716. PubMed ID: 9373669 [TBL] [Abstract][Full Text] [Related]
4. Spatial frequency tuned covariance channels for red-green and luminance-modulated gratings: psychophysical data from human infants. Peterzell DH; Chang SK; Teller DY Vision Res; 2000; 40(4):431-44. PubMed ID: 10820623 [TBL] [Abstract][Full Text] [Related]
5. The development of chromatic and achromatic contrast sensitivity in infancy as tested with the sweep VEP. Kelly JP; Borchert K; Teller DY Vision Res; 1997 Aug; 37(15):2057-72. PubMed ID: 9327054 [TBL] [Abstract][Full Text] [Related]
6. Luminance mechanisms mediate the motion of red-green isoluminant gratings: the role of "temporal chromatic aberration". Mullen KT; Yoshizawa T; Baker CL Vision Res; 2003 May; 43(11):1235-47. PubMed ID: 12726830 [TBL] [Abstract][Full Text] [Related]
7. Absence of smooth motion perception in color vision. Mullen KT; Boulton JC Vision Res; 1992 Mar; 32(3):483-8. PubMed ID: 1604835 [TBL] [Abstract][Full Text] [Related]
8. Does chromatic sensitivity develop more slowly than luminance sensitivity? Allen D; Banks MS; Norcia AM Vision Res; 1993 Dec; 33(17):2553-62. PubMed ID: 8249334 [TBL] [Abstract][Full Text] [Related]
9. Spatial and temporal chromatic contrast: Effects on chromatic discrimination for stimuli varying in L- and M-cone excitation. Zele AJ; Smith VC; Pokorny J Vis Neurosci; 2006; 23(3-4):495-501. PubMed ID: 16961986 [TBL] [Abstract][Full Text] [Related]
10. Infant temporal contrast sensitivity functions (tCSFs) mature earlier for luminance than for chromatic stimuli: evidence for precocious magnocellular development? Dobkins KR; Anderson CM; Lia B Vision Res; 1999 Sep; 39(19):3223-39. PubMed ID: 10615492 [TBL] [Abstract][Full Text] [Related]
11. Motion of chromatic stimuli: first-order or second-order? Cropper SJ; Derrington AM Vision Res; 1994 Jan; 34(1):49-58. PubMed ID: 8116268 [TBL] [Abstract][Full Text] [Related]
12. Thresholds for the identification of the direction of motion of plaid patterns defined by luminance or chromatic contrast. Gegenfurtner KR Vision Res; 1998 Mar; 38(6):881-8. PubMed ID: 9624437 [TBL] [Abstract][Full Text] [Related]
13. S-cone discrimination for stimuli with spatial and temporal chromatic contrast. Cao D; Zele AJ; Smith VC; Pokorny J Vis Neurosci; 2008; 25(3):349-54. PubMed ID: 18598405 [TBL] [Abstract][Full Text] [Related]
14. Effects of contrast and temporal frequency on orientation discrimination for luminance and isoluminant stimuli. Reisbeck TE; Gegenfurtner KR Vision Res; 1998 Apr; 38(8):1105-17. PubMed ID: 9666970 [TBL] [Abstract][Full Text] [Related]
16. Infant motion: detection (M:D) ratios for chromatically defined and luminance-defined moving stimuli. Dobkins KR; Teller DY Vision Res; 1996 Oct; 36(20):3293-310. PubMed ID: 8944288 [TBL] [Abstract][Full Text] [Related]
17. The contribution of color to global motion processing. Michna ML; Mullen KT J Vis; 2008 May; 8(5):10.1-12. PubMed ID: 18842081 [TBL] [Abstract][Full Text] [Related]