These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 9893994)
1. The conserved arginine in rho-GTPase-activating protein is essential for efficient catalysis but not for complex formation with Rho.GDP and aluminum fluoride. Graham DL; Eccleston JF; Lowe PN Biochemistry; 1999 Jan; 38(3):985-91. PubMed ID: 9893994 [TBL] [Abstract][Full Text] [Related]
2. Structure at 1.65 A of RhoA and its GTPase-activating protein in complex with a transition-state analogue. Rittinger K; Walker PA; Eccleston JF; Smerdon SJ; Gamblin SJ Nature; 1997 Oct; 389(6652):758-62. PubMed ID: 9338791 [TBL] [Abstract][Full Text] [Related]
3. Structures of Cdc42 bound to the active and catalytically compromised forms of Cdc42GAP. Nassar N; Hoffman GR; Manor D; Clardy JC; Cerione RA Nat Struct Biol; 1998 Dec; 5(12):1047-52. PubMed ID: 9846874 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP. Rittinger K; Walker PA; Eccleston JF; Nurmahomed K; Owen D; Laue E; Gamblin SJ; Smerdon SJ Nature; 1997 Aug; 388(6643):693-7. PubMed ID: 9262406 [TBL] [Abstract][Full Text] [Related]
5. Insight into catalysis of a unique GTPase reaction by a combined biochemical and FTIR approach. Chakrabarti PP; Daumke O; Suveyzdis Y; Kötting C; Gerwert K; Wittinghofer A J Mol Biol; 2007 Apr; 367(4):983-95. PubMed ID: 17300802 [TBL] [Abstract][Full Text] [Related]
6. Magnesium fluoride-dependent binding of small G proteins to their GTPase-activating proteins. Graham DL; Eccleston JF; Chung CW; Lowe PN Biochemistry; 1999 Nov; 38(45):14981-7. PubMed ID: 10555980 [TBL] [Abstract][Full Text] [Related]
7. An aspartate residue at the extracellular boundary of TMII and an arginine residue in TMVII of the gastrin-releasing peptide receptor interact to facilitate heterotrimeric G protein coupling. Donohue PJ; Sainz E; Akeson M; Kroog GS; Mantey SA; Battey JF; Jensen RT; Northup JK Biochemistry; 1999 Jul; 38(29):9366-72. PubMed ID: 10413511 [TBL] [Abstract][Full Text] [Related]
8. Regulation of RhoA GTP hydrolysis by the GTPase-activating proteins p190, p50RhoGAP, Bcr, and 3BP-1. Zhang B; Zheng Y Biochemistry; 1998 Apr; 37(15):5249-57. PubMed ID: 9548756 [TBL] [Abstract][Full Text] [Related]
9. Structural insights into the GTPase domain of Escherichia coli MnmE protein. Monleón D; Martínez-Vicente M; Esteve V; Yim L; Prado S; Armengod ME; Celda B Proteins; 2007 Feb; 66(3):726-39. PubMed ID: 17143896 [TBL] [Abstract][Full Text] [Related]
11. GTPase mechanism and function: new insights from systematic mutational analysis of the phosphate-binding loop residue Ala30 of Rab5. Liang Z; Mather T; Li G Biochem J; 2000 Mar; 346 Pt 2(Pt 2):501-8. PubMed ID: 10677372 [TBL] [Abstract][Full Text] [Related]
12. Modulation of the affinity and selectivity of RGS protein interaction with G alpha subunits by a conserved asparagine/serine residue. Posner BA; Mukhopadhyay S; Tesmer JJ; Gilman AG; Ross EM Biochemistry; 1999 Jun; 38(24):7773-9. PubMed ID: 10387017 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of the guanine nucleotide exchange reaction of Ras GTPase--evidence for a GTP/GDP displacement model. Zhang B; Zhang Y; Shacter E; Zheng Y Biochemistry; 2005 Feb; 44(7):2566-76. PubMed ID: 15709769 [TBL] [Abstract][Full Text] [Related]
14. Nucleoside diphosphate kinase of Mycobacterium tuberculosis acts as GTPase-activating protein for Rho-GTPases. Chopra P; Koduri H; Singh R; Koul A; Ghildiyal M; Sharma K; Tyagi AK; Singh Y FEBS Lett; 2004 Jul; 571(1-3):212-6. PubMed ID: 15280044 [TBL] [Abstract][Full Text] [Related]
15. How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP. Ghosh A; Praefcke GJ; Renault L; Wittinghofer A; Herrmann C Nature; 2006 Mar; 440(7080):101-4. PubMed ID: 16511497 [TBL] [Abstract][Full Text] [Related]
16. Noncanonical Myo9b-RhoGAP Accelerates RhoA GTP Hydrolysis by a Dual-Arginine-Finger Mechanism. Yi F; Kong R; Ren J; Zhu L; Lou J; Wu JY; Feng W J Mol Biol; 2016 Jul; 428(15):3043-57. PubMed ID: 27363609 [TBL] [Abstract][Full Text] [Related]
17. The structure of the GTPase-activating domain from p50rhoGAP. Barrett T; Xiao B; Dodson EJ; Dodson G; Ludbrook SB; Nurmahomed K; Gamblin SJ; Musacchio A; Smerdon SJ; Eccleston JF Nature; 1997 Jan; 385(6615):458-61. PubMed ID: 9009196 [TBL] [Abstract][Full Text] [Related]
18. Biochemical characterization of Rab3-GTPase-activating protein reveals a mechanism similar to that of Ras-GAP. Clabecq A; Henry JP; Darchen F J Biol Chem; 2000 Oct; 275(41):31786-91. PubMed ID: 10859313 [TBL] [Abstract][Full Text] [Related]
19. Mutation of the highly conserved Arg165 and Glu168 residues of human Gsalpha disrupts the alphaD-alphaE loop and enhances basal GDP/GTP exchange rate. Hinrichs MV; Montecino M; Bunster M; Olate J J Cell Biochem; 2004 Oct; 93(2):409-17. PubMed ID: 15368366 [TBL] [Abstract][Full Text] [Related]
20. Formation of a transition-state analog of the Ras GTPase reaction by Ras-GDP, tetrafluoroaluminate, and GTPase-activating proteins. Mittal R; Ahmadian MR; Goody RS; Wittinghofer A Science; 1996 Jul; 273(5271):115-7. PubMed ID: 8658179 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]