These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 9894228)

  • 1. [Sleep maturation in the first two years of life: quantitative aspects, structural and circadian].
    Louis J
    Neurophysiol Clin; 1998 Dec; 28(6):477-91. PubMed ID: 9894228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sleep ontogenesis revisited: a longitudinal 24-hour home polygraphic study on 15 normal infants during the first two years of life.
    Louis J; Cannard C; Bastuji H; Challamel MJ
    Sleep; 1997 May; 20(5):323-33. PubMed ID: 9381053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Participation of limbic-hypothalamic structures in circadian rhythm of slow wave sleep and paradoxical sleep in the rat.
    Yamaoka S
    Brain Res; 1978 Aug; 151(2):255-68. PubMed ID: 209863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Circadian rhythms of slow-wave sleep and paradoxical sleep are in opposite phase in genetically hypoprolactinemic rats].
    Valatx JL; Jouvet M
    C R Acad Sci III; 1988; 307(17):789-94. PubMed ID: 3144410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of ambient temperature on the sleep-waking cycle in two strains of mice.
    Roussel B; Turrillot P; Kitahama K
    Brain Res; 1984 Feb; 294(1):67-73. PubMed ID: 6697243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-night sleep polygraphic recordings of healthy aged persons: REM and slow-wave sleep.
    Hayashi Y; Endo S
    Sleep; 1982; 5(3):277-83. PubMed ID: 7134733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term effects of a tryptophan-free diet on serotonin metabolism and sleep-waking balance in rats.
    Lanoir J; Ternaux JP; Pons C; Lagarde JM
    Exp Brain Res; 1981; 41(3-4):346-57. PubMed ID: 6163653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ontogeny and physiology confirms the dual nature of sleep states.
    Valatx JL
    Arch Ital Biol; 2004 Jul; 142(4):569-80. PubMed ID: 15493558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of REM sleep to Fos and FRA expression in the vestibular nuclei of rat leading to vestibular adaptation during the STS-90 Neurolab Mission.
    Pompeiano O
    Arch Ital Biol; 2007 Jan; 145(1):55-85. PubMed ID: 17274184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slow wave sleep (SWS) distribution across night sleep episode in the elderly.
    Lombardo P; Formicola G; Gori S; Gneri C; Massetani R; Murri L; Fagioli I; Salzarulo P
    Aging (Milano); 1998 Dec; 10(6):445-8. PubMed ID: 10078313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms].
    Šaponjić J
    Glas Srp Akad Nauka Med; 2011; (51):85-97. PubMed ID: 22165729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ontogenesis of nocturnal organization of sleep spindles: a longitudinal study during the first 6 months of life.
    Louis J; Zhang JX; Revol M; Debilly G; Challamel MJ
    Electroencephalogr Clin Neurophysiol; 1992 Nov; 83(5):289-96. PubMed ID: 1385085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroencephalogram power density and slow wave sleep as a function of prior waking and circadian phase.
    Dijk DJ; Brunner DP; Beersma DG; Borbély AA
    Sleep; 1990 Oct; 13(5):430-40. PubMed ID: 2287855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suprachiasmatic nuclei lesions in the rat: alterations in sleep circadian rhythms.
    Mouret J; Coindet J; Debilly G; Chouvet G
    Electroencephalogr Clin Neurophysiol; 1978 Sep; 45(3):402-8. PubMed ID: 79478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arousal threshold to respiratory stimuli in OSA patients: evidence for a sleep-dependent temporal rhythm.
    Sforza E; Krieger J; Petiau C
    Sleep; 1999 Feb; 22(1):69-75. PubMed ID: 9989367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of circadian physiology and sleep homeostasis to age-related changes in human sleep.
    Dijk DJ; Duffy JF; Czeisler CA
    Chronobiol Int; 2000 May; 17(3):285-311. PubMed ID: 10841208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persistence of the circadian rhythm of REM sleep: a variety of experimental manipulations of the sleep-wake cycle.
    Endo S; Kobayashi T; Yamamoto T; Fukuda H; Sasaki M; Ohta T
    Sleep; 1981 Sep; 4(3):319-28. PubMed ID: 7302463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental Changes in Ultradian Sleep Cycles across Early Childhood.
    Lopp S; Navidi W; Achermann P; LeBourgeois M; Diniz Behn C
    J Biol Rhythms; 2017 Feb; 32(1):64-74. PubMed ID: 28088873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep.
    Verret L; Goutagny R; Fort P; Cagnon L; Salvert D; Léger L; Boissard R; Salin P; Peyron C; Luppi PH
    BMC Neurosci; 2003 Sep; 4():19. PubMed ID: 12964948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans.
    Dijk DJ; Czeisler CA
    J Neurosci; 1995 May; 15(5 Pt 1):3526-38. PubMed ID: 7751928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.