BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 9894722)

  • 1. In vitro cytokine-primed leukaemia cells induce in vivo T cell responsiveness in chronic myeloid leukaemia.
    Lim SH; Coleman S; Bailey-Wood R
    Bone Marrow Transplant; 1998 Dec; 22(12):1185-90. PubMed ID: 9894722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [In vitro inducing differentiation of bone marrow mononuclear cells of chronic myeloid leukemia].
    Wu CY; Zhang LS; Zhang YF; Chai Y; Yi LC; Song FX
    Ai Zheng; 2005 Apr; 24(4):425-31. PubMed ID: 15820064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serum-free culture of dendritic cells from patients with chronic myeloid leukemia in vitro and estimation of their cytotoxicity.
    Zhao W; Xing P; Wei X; Wang T; Yang D; Li M
    Chin Med J (Engl); 2002 Sep; 115(9):1296-300. PubMed ID: 12411098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serum-free generation and quantification of functionally active Leukemia-derived DC is possible from malignant blasts in acute myeloid leukemia and myelodysplastic syndromes.
    Kufner S; Fleischer RP; Kroell T; Schmid C; Zitzelsberger H; Salih H; de Valle F; Treder W; Schmetzer HM
    Cancer Immunol Immunother; 2005 Oct; 54(10):953-70. PubMed ID: 15789235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. B7 costimulatory molecules from malignant cells in patients with b-cell chronic lymphoproliferative disorders trigger t-cell proliferation.
    Trentin L; Perin A; Siviero M; Piazza F; Facco M; Gurrieri C; Galvan S; Adami F; Agostini C; Pizzolo G; Zambello R; Semenzato G
    Cancer; 2000 Sep; 89(6):1259-68. PubMed ID: 11002221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of costimulatory molecules CD80 and/or CD86 by a Kaposi's sarcoma tumor cell line induces differential T-cell activation and proliferation.
    Foreman KE; Wrone-Smith T; Krueger AE; Nickoloff BJ
    Clin Immunol; 1999 Jun; 91(3):345-53. PubMed ID: 10370381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of the concentration of autologous serum for generation of leukemic dendritic cells from acute myeloid leukemic cells for clinical immunotherapy.
    Choi BH; Kang HK; Park JS; Kim SK; Pham TN; Zhu XW; Cho D; Nam JH; Chung IJ; Kim YJ; Rhee JH; Kim HJ; Lee JJ
    J Clin Apher; 2006 Dec; 21(4):233-40. PubMed ID: 17120232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression patterns of costimulatory molecules on cells derived from human hematological malignancies.
    Zheng Z; Takahashi M; Aoki S; Toba K; Liu A; Osman Y; Takahashi H; Tsukada N; Suzuki N; Nikkuni K; Furukawa T; Koike T; Aizawa Y
    J Exp Clin Cancer Res; 1998 Sep; 17(3):251-8. PubMed ID: 9894758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Helper and cytotoxic lymphocyte responses to chronic myeloid leukaemia: implications for adoptive immunotherapy with T cells.
    Lewalle P; Hensel N; Guimaraes A; Couriel D; Jiang Y Z; Mavroudis D; Barrett AJ
    Br J Haematol; 1996 Mar; 92(3):587-94. PubMed ID: 8616022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human acute lymphoblastic leukemia (ALL) blasts as accessory cells during T-cell activation: differences between patients in costimulatory capacity affect proliferative responsiveness and cytokine release by activated T cells.
    Bruserud O; Ulvestad E
    Cancer Immunol Immunother; 2003 Apr; 52(4):215-25. PubMed ID: 12669246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monocyte-derived dendritic cells from HLA-matched allogeneic donors showed a greater ability to induce leukemic cell-specific T cells in comparison to leukemic cell-derived dendritic cells or monocyte-derived dendritic cells from AML patients.
    Lee JJ; Choi BH; Kang HK; Kim SK; Nam JH; Yang DH; Kim YK; Kim HJ; Chung IJ
    Leuk Res; 2008 Nov; 32(11):1653-60. PubMed ID: 18501426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Investigation on specific killing acute leukemia cell reaction of the cytotoxic T lymphocyte induced by dendritic cell pulsed with frozen-thawed antigen].
    He B; Qiu G; Xie X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Dec; 21(6):974-8. PubMed ID: 15646345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leukemia-derived dendritic cells can be generated from blood or bone marrow cells from patients with acute myeloid leukaemia: a methodological approach under serum-free culture conditions.
    Kufner S; Zitzelsberger H; Kroell T; Pelka-Fleischer R; Salem A; de Valle F; Schweiger C; Nuessler V; Schmid C; Kolb HJ; Schmetzer HM
    Scand J Immunol; 2005 Jul; 62(1):86-98. PubMed ID: 16091128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential modulation of immune recognition molecules by interleukin-7 in human acute leukaemias.
    Costello RT; Mallet F; Chambost H; Sainty D; Gastaut JA; Olive D
    Eur Cytokine Netw; 1999 Mar; 10(1):87-96. PubMed ID: 10210778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leukaemia-derived dendritic cells can be generated from blood or bone marrow cells from patients with myelodysplasia: a methodological approach under serum-free culture conditions.
    Kufner S; Zitzelsberger H; Kroell T; Pelka-Fleischer R; Salem A; de Valle F; Schmid C; Schweiger C; Kolb HJ; Schmetzer HM
    Scand J Immunol; 2005 Jul; 62(1):75-85. PubMed ID: 16091127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vaccination with autologous non-irradiated dendritic cells in patients with bcr/abl+ chronic myeloid leukaemia.
    Westermann J; Kopp J; van Lessen A; Hecker AC; Baskaynak G; le Coutre P; Döhner K; Döhner H; Dörken B; Pezzutto A
    Br J Haematol; 2007 May; 137(4):297-306. PubMed ID: 17408402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of dendritic cells generated from peripheral blood of patients with malignant melanoma.
    Chang JW; Vaquerano JE; Zhou YM; Peng M; Leong SP
    Anticancer Res; 1999; 19(3A):1815-20. PubMed ID: 10470120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of IL-2R beta-binding cytokines on costimulatory properties of chronic lymphocytic leukaemia cells: implications for immunotherapy.
    Spaner DE; Hammond C; Mena J; Shi Y
    Br J Haematol; 2004 Dec; 127(5):531-42. PubMed ID: 15566356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing the safety of clinical-grade mature autologous myeloid DC in a phase I clinical immunotherapy trial of CML.
    Litzow MR; Dietz AB; Bulur PA; Butler GW; Gastineau DA; Hoering A; Fink SR; Letendre L; Padley DJ; Paternoster SF; Tefferi A; Vuk-Pavlović S
    Cytotherapy; 2006; 8(3):290-8. PubMed ID: 16793737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid generation of antigen-presenting cells from leukaemic blasts in acute myeloid leukaemia.
    Westers TM; Stam AG; Scheper RJ; Regelink JC; Nieuwint AW; Schuurhuis GJ; van de Loosdrecht AA; Ossenkoppele GJ
    Cancer Immunol Immunother; 2003 Jan; 52(1):17-27. PubMed ID: 12536236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.