These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 9894863)

  • 1. Human red cells from pre (hepato splenic-late fetal) and postnatal (bone marrow-adult's) stages of haemopoiesis: Na+/Li+ exchange kinetic.
    Taborda D; Serrani RE; Corchs JL
    Arch Physiol Biochem; 1998 Apr; 106(2):81-7. PubMed ID: 9894863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na+/Li+ exchange kinetic characterization. Red blood cells from normotensive individuals.
    Corchs JL; Taborda D; Mujica G; Serrani RE
    Acta Physiol Pharmacol Bulg; 2000; 25(3-4):75-9. PubMed ID: 11688550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human red cells from prenatal hemopoiesis. Sodium/lithium exchange symmetry.
    Mújica G; Taborda D; Corchs JL; Serrani RE
    J Physiol Biochem; 1998 Jun; 54(2):85-90. PubMed ID: 9858128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of Na-Li exchange in high and low K sheep red blood cells.
    Ryu KH; Adragna NC; Lauf PK
    Am J Physiol; 1989 Jul; 257(1 Pt 1):C58-64. PubMed ID: 2750891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human red cells from prenatal stages of hemopoiesis. Lithium flux components.
    Corchs JL; Mujica G; Serrani RE
    Rev Esp Fisiol; 1996 Jun; 52(2):77-82. PubMed ID: 8870104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium-lithium exchange and sodium-proton exchange are mediated by the same transport system in sarcolemmal vesicles from bovine superior mesenteric artery.
    Kahn AM; Allen JC; Cragoe EJ; Shelat H
    Circ Res; 1989 Sep; 65(3):818-28. PubMed ID: 2548766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of cholesterol and dipalmitoyl phosphatidylcholine enrichment on the kinetics of Na-Li exchange of human erythrocytes.
    Engelmann B; Duhm J
    J Membr Biol; 1991 Jun; 122(3):231-8. PubMed ID: 1920387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics and stoichiometry of Na-dependent Li transport in human red blood cells.
    Sarkadi B; Alifimoff JK; Gunn RB; Tosteson DC
    J Gen Physiol; 1978 Aug; 72(2):249-65. PubMed ID: 690598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human red blood cells from prenatal hemopoiesis. Lithium flux (sodium dependent) asymmetry.
    Corchs JL; Taborda D; Serrani RE
    Biocell; 2000 Dec; 24(3):233-7. PubMed ID: 11201659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A kinetic analysis of Na-Li countertransport in human red blood cells.
    Hannaert PA; Garay RP
    J Gen Physiol; 1986 Mar; 87(3):353-68. PubMed ID: 2420916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of sodium content on sodium efflux from human red cells suspended in sodium-free media containing potassium, rubidium, caesium or lithium chloride.
    Maizels M
    J Physiol; 1968 Apr; 195(3):657-79. PubMed ID: 5649640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic differences in lithium-sodium exchange and regulation of the sodium-hydrogen exchanger in essential hypertension.
    Canessa ML; Morgan K; Semplicini A
    J Cardiovasc Pharmacol; 1988; 12 Suppl 3():S92-8. PubMed ID: 2467112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic evidence that the Na-PO4 cotransporter is the molecular mechanism for Na/Li exchange in human red blood cells.
    Elmariah S; Gunn RB
    Am J Physiol Cell Physiol; 2003 Aug; 285(2):C446-56. PubMed ID: 12672655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of volume-sensitive K transport in human erythrocytes: evidence for asymmetry.
    Kaji DM
    Am J Physiol; 1989 Jun; 256(6 Pt 1):C1214-23. PubMed ID: 2735397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Li/Na exchange and Li active transport in human lymphoid cells U937 cultured in lithium media].
    Iurinskaia VE; Moshkov AV; Goriachaia TS; Vereninov AA
    Tsitologiia; 2013; 55(10):703-12. PubMed ID: 25509124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lithium transport pathways in human red blood cells.
    Pandey GN; Sarkadi B; Haas M; Gunn RB; Davis JM; Tosteson DC
    J Gen Physiol; 1978 Aug; 72(2):233-47. PubMed ID: 690597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na(+)-H+ and Na(+)-Li+ exchange are mediated by the same membrane transport protein in human red blood cells: an NMR investigation.
    Chi Y; Mo S; Mota de Freitas D
    Biochemistry; 1996 Sep; 35(38):12433-42. PubMed ID: 8823178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A kinetic expression for sodium-lithium countertransport in human red cells.
    Smith JB; Ash KO; Hentschel WM; Williams RR
    Clin Chim Acta; 1982 Jul; 122(3):337-43. PubMed ID: 7105418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic properties of erythrocyte Na+-Li+ and Na+-H+ exchange in hypertensive patients.
    Semplicini A; Ceolotto G; Felice M; Reato S; Valle R; Gebbin A; Fontebasso A; Serena L; Pessina AC
    J Hypertens; 1995 Dec; 13(12 Pt 2):1566-70. PubMed ID: 8903610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red cell lithium-sodium countertransport and sodium-potassium cotransport in patients with essential hypertension.
    Adragna NC; Canessa ML; Solomon H; Slater E; Tosteson DC
    Hypertension; 1982; 4(6):795-804. PubMed ID: 7141606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.