BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 9894865)

  • 1. The possible importance of the cation-binding site for the oxidative modification of liver 5'-nucleotidase.
    Kocić G; Vlahović P; Pavlović D; Kocić R; Cvetković T; Stojanović I
    Arch Physiol Biochem; 1998 Apr; 106(2):91-9. PubMed ID: 9894865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative modification of rat liver 5'-nucleotidase: the mechanisms for protection and re-activation.
    Kocic G; Pavlovic D; Jevtovic T; Kocic R; Bojic A; Vlahovic P; Djordjevic V; Sokolovic D; Djindjic B
    Arch Physiol Biochem; 2001 Oct; 109(4):323-30. PubMed ID: 11935367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid peroxidation as the mechanism of modification of brain 5'-nucleotidase activity in vitro.
    Mishra OP; Delivoria-Papadopoulos M; Cahillane G; Wagerle LC
    Neurochem Res; 1990 Mar; 15(3):237-42. PubMed ID: 2366928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xanthine oxidase is involved in free radical production in type 1 diabetes: protection by allopurinol.
    Desco MC; Asensi M; Márquez R; Martínez-Valls J; Vento M; Pallardó FV; Sastre J; Viña J
    Diabetes; 2002 Apr; 51(4):1118-24. PubMed ID: 11916934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different role of lipid peroxidation in oxidative stress-induced lethal injury in normal and tumor thymocytes.
    Palozza P; Agostara G; Piccioni E; Bartoli GM
    Arch Biochem Biophys; 1994 Jul; 312(1):88-94. PubMed ID: 8031151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid peroxidation causes an increase of lipid order and a decrease of 5'-nucleotidase activity in the liver plasma membrane.
    Pieri C; Falasca M; Marcheselli F; Recchioni R; Moroni F
    Cell Mol Biol; 1992 Jul; 38(4):437-42. PubMed ID: 1499043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of calcium channel blockers on superoxide anions.
    Shridi F; Robak J
    Pharmacol Res Commun; 1988 Jan; 20(1):13-21. PubMed ID: 2836871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methapyrilene hepatotoxicity is associated with oxidative stress, mitochondrial disfunction and is prevented by the Ca2+ channel blocker verapamil.
    Ratra GS; Morgan WA; Mullervy J; Powell CJ; Wright MC
    Toxicology; 1998 Sep; 130(2-3):79-93. PubMed ID: 9865476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative inactivation of brain ecto-5'-nucleotidase by thiols/Fe2+ system.
    Liu XW; Sok DE
    Neurochem Res; 2000 Nov; 25(11):1475-84. PubMed ID: 11071366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free radicals generated by xanthine oxidase mediate pancreatitis-associated organ failure.
    Folch E; Gelpí E; Roselló-Catafau J; Closa D
    Dig Dis Sci; 1998 Nov; 43(11):2405-10. PubMed ID: 9824126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative stress inactivates ecto-5'-nucleotidase by inhibiting protein kinase C in rat hearts in vivo.
    Obata T; Nakashima M
    Eur J Pharmacol; 2017 Jun; 805():125-130. PubMed ID: 28219711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of calcium channel blockers as potential hepatoprotective agents in oxidative stress injury of perfused hepatocytes.
    Farghali H; Kmonícková E; Lotková H; Martínek J
    Physiol Res; 2000; 49(2):261-8. PubMed ID: 10984093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of ursodeoxycholic acid on oxidative stress level and DNase activity in rat liver after bile duct ligation.
    Sokolovic D; Nikolic J; Kocic G; Jevtovic-Stoimenov T; Veljkovic A; Stojanovic M; Stanojkovic Z; Sokolovic DM; Jelic M
    Drug Chem Toxicol; 2013 Apr; 36(2):141-8. PubMed ID: 22385135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free radical effects on myocardial membrane microviscosity.
    Coetzee IH; Lochner A
    Cardioscience; 1993 Dec; 4(4):205-15. PubMed ID: 8298062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular concentrations of oxypurines in xanthine oxidase-deficient hepatoma-derived cell line HuH-7.
    Yamamoto T; Moriwaki Y; Agbedana OE; Takahashi S; Nasako Y; Yokoyama Y; Higashino K
    Adv Exp Med Biol; 1994; 370():753-6. PubMed ID: 7661014
    [No Abstract]   [Full Text] [Related]  

  • 16. In situ analysis of ischaemia/reperfusion injury in rat liver studied in three different models.
    Straatsburg IH; Frederiks WM
    Int J Exp Pathol; 1997 Jun; 78(3):149-61. PubMed ID: 9306922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of growth factors on the enzymes of purine metabolism in culture of regenerating rat liver cells.
    Kocić G; Vlahović P; Dordević V; Bjelaković G; Koraćević D; Savić V
    Arch Physiol Biochem; 1995 Dec; 103(6):715-9. PubMed ID: 8697004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Similar protective effect of ischaemic and ozone oxidative preconditionings in liver ischaemia/reperfusion injury.
    Ajamieh H; Merino N; Candelario-Jalil E; Menéndez S; Martinez-Sanchez G; Re L; Giuliani A; Leon OS
    Pharmacol Res; 2002 Apr; 45(4):333-9. PubMed ID: 12030798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular mechanism of U78517F in the protection of porcine coronary artery endothelial cells from oxygen radical-induced damage.
    Maeda K; Kimura M; Hayashi S
    Br J Pharmacol; 1993 Apr; 108(4):1077-82. PubMed ID: 8485619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of triton X-100 and concanavalin A on the properties of 5'-nucleotidase in rat liver and adipose plasma membranes: a role of membrane structure in the regulation of enzyme activity.
    Yegutkin GG
    Membr Cell Biol; 1997; 10(6):631-8. PubMed ID: 9231361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.