These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum. Dixit P; Mukherjee PK; Ramachandran V; Eapen S PLoS One; 2011 Jan; 6(1):e16360. PubMed ID: 21283689 [TBL] [Abstract][Full Text] [Related]
44. [Genetic transformation of Nicotiana tabacum L. by Agrobacterium tumefaciens carrying genes in the melatonin biosynthesis pathway and the enhancement of antioxidative capability in transgenic plants]. Wang Y; Ji J; Bu H; Zhao Y; Xu Y; Johnson CH; Kolár J Sheng Wu Gong Cheng Xue Bao; 2009 Jul; 25(7):1014-21. PubMed ID: 19835142 [TBL] [Abstract][Full Text] [Related]
45. Differential expression of a chimeric CaMV-tomato proteinase Inhibitor I gene in leaves of transformed nightshade, tobacco and alfalfa plants. Narváez-Vásquez J; Orozco-Cárdenas ML; Ryan CA Plant Mol Biol; 1992 Dec; 20(6):1149-57. PubMed ID: 1463848 [TBL] [Abstract][Full Text] [Related]
46. A new double right border binary vector for producing marker-free transgenic plants. Matheka JM; Anami S; Gethi J; Omer RA; Alakonya A; Machuka J; Runo S BMC Res Notes; 2013 Nov; 6():448. PubMed ID: 24207020 [TBL] [Abstract][Full Text] [Related]
47. Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene. van Hoof NA; Hassinen VH; Hakvoort HW; Ballintijn KF; Schat H; Verkleij JA; Ernst WH; Karenlampi SO; Tervahauta AI Plant Physiol; 2001 Aug; 126(4):1519-26. PubMed ID: 11500550 [TBL] [Abstract][Full Text] [Related]
48. Agrobacterium tumefaciens-mediated transformation of Withania somnifera (L.) Dunal: an important medicinal plant. Pandey V; Misra P; Chaturvedi P; Mishra MK; Trivedi PK; Tuli R Plant Cell Rep; 2010 Feb; 29(2):133-41. PubMed ID: 20012541 [TBL] [Abstract][Full Text] [Related]
49. Tobacco mosaic virus infection of transgenic Nicotiana tabacum plants is inhibited by antisense constructs directed at the 5' region of viral RNA. Nelson A; Roth DA; Johnson JD Gene; 1993 May; 127(2):227-32. PubMed ID: 8500765 [TBL] [Abstract][Full Text] [Related]
50. Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants. Misra S; Gedamu L Theor Appl Genet; 1989 Aug; 78(2):161-8. PubMed ID: 24227139 [TBL] [Abstract][Full Text] [Related]
51. Coat protein-mediated resistance in transgenic tobacco expressing the tobacco mosaic virus coat protein from tissue-specific promoters. Reimann-Philipp U; Beachy RN Mol Plant Microbe Interact; 1993; 6(3):323-30. PubMed ID: 8324249 [TBL] [Abstract][Full Text] [Related]
52. [Cloning of y3 gene encoding a tobacco mosaic virus inhibitor from Coprinus comatus and transformation to Nicotiana tabacum]. Wang X; He T; Zhang G; Hao J; Jia J Wei Sheng Wu Xue Bao; 2010 Feb; 50(2):182-90. PubMed ID: 20387460 [TBL] [Abstract][Full Text] [Related]
53. Specialized binary vector for plant transformation: expression of the Arabidopsis thaliana AHAS gene in Nicotiana tabacum. Olszewski NE; Martin FB; Ausubel FM Nucleic Acids Res; 1988 Nov; 16(22):10765-82. PubMed ID: 3060849 [TBL] [Abstract][Full Text] [Related]
54. An S-RNase promoter from Nicotiana alata functions in transgenic N. alata plants but not Nicotiana tabacum. Murfett J; Ebert PR; Haring V; Clarke AE Plant Mol Biol; 1995 Aug; 28(5):957-63. PubMed ID: 7640367 [TBL] [Abstract][Full Text] [Related]
55. Engineering expression of bacterial polyphosphate kinase in tobacco for mercury remediation. Nagata T; Kiyono M; Pan-Hou H Appl Microbiol Biotechnol; 2006 Oct; 72(4):777-82. PubMed ID: 16514513 [TBL] [Abstract][Full Text] [Related]
56. Integration of T-DNA binary vector 'backbone' sequences into the tobacco genome: evidence for multiple complex patterns of integration. Kononov ME; Bassuner B; Gelvin SB Plant J; 1997 May; 11(5):945-57. PubMed ID: 9193068 [TBL] [Abstract][Full Text] [Related]
57. Exogenous phytohormone-independent growth and regeneration of tobacco plants transgenic for the 6b gene of Agrobacterium tumefaciens AKE10. Wabiko H; Minemura M Plant Physiol; 1996 Nov; 112(3):939-51. PubMed ID: 8938404 [TBL] [Abstract][Full Text] [Related]
58. Improved phytoaccumulation of cadmium by genetically modified tobacco plants (Nicotiana tabacum L.). Physiological and biochemical response of the transformants to cadmium toxicity. Gorinova N; Nedkovska M; Todorovska E; Simova-Stoilova L; Stoyanova Z; Georgieva K; Demirevska-Kepova K; Atanassov A; Herzig R Environ Pollut; 2007 Jan; 145(1):161-70. PubMed ID: 16762468 [TBL] [Abstract][Full Text] [Related]
60. Pollen ablation of transgenic tobacco plants by expression of the diphtheria toxin A-chain gene under the control of a putative pectin esterase promoter from Chinese cabbage. Uk Kim H; Seok Park B; Park YD; Jin YM Mol Cells; 1998 Jun; 8(3):310-7. PubMed ID: 9666468 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]