These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1091 related articles for article (PubMed ID: 9895674)

  • 1. Canonical dynamics: Equilibrium phase-space distributions.
    Hoover WG
    Phys Rev A Gen Phys; 1985 Mar; 31(3):1695-1697. PubMed ID: 9895674
    [No Abstract]   [Full Text] [Related]  

  • 2. An approach for generating trajectory-based dynamics which conserves the canonical distribution in the phase space formulation of quantum mechanics. I. Theories.
    Liu J; Miller WH
    J Chem Phys; 2011 Mar; 134(10):104101. PubMed ID: 21405150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Random walk to a nonergodic equilibrium concept.
    Bel G; Barkai E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016125. PubMed ID: 16486234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two more approaches for generating trajectory-based dynamics which conserves the canonical distribution in the phase space formulation of quantum mechanics.
    Liu J
    J Chem Phys; 2011 May; 134(19):194110. PubMed ID: 21599047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient computations of quantum canonical Gibbs state in phase space.
    Bondar DI; Campos AG; Cabrera R; Rabitz HA
    Phys Rev E; 2016 Jun; 93(6):063304. PubMed ID: 27415384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An approach for generating trajectory-based dynamics which conserves the canonical distribution in the phase space formulation of quantum mechanics. II. Thermal correlation functions.
    Liu J; Miller WH
    J Chem Phys; 2011 Mar; 134(10):104102. PubMed ID: 21405151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Canonical and noncanonical equilibrium distribution.
    Annunziato M; Grigolini P; West BJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):011107. PubMed ID: 11461225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum-classical correspondence for the equilibrium distributions of two interacting spins.
    Emerson J; Ballentine LE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026217. PubMed ID: 11497687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast Nosé-Hoover thermostat: molecular dynamics in quasi-thermodynamic equilibrium.
    Sidler D; Riniker S
    Phys Chem Chem Phys; 2019 Mar; 21(11):6059-6070. PubMed ID: 30810120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase space structure and dynamics for the Hamiltonian isokinetic thermostat.
    Collins P; Ezra GS; Wiggins S
    J Chem Phys; 2010 Jul; 133(1):014105. PubMed ID: 20614957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-Accelerated Sampling and Amplified Collective Motion with Adiabatic Reweighting to Obtain Canonical Distributions and Ensemble Averages.
    Hu Y; Hong W; Shi Y; Liu H
    J Chem Theory Comput; 2012 Oct; 8(10):3777-92. PubMed ID: 26593019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Canonical phase-space approach to the noisy Burgers equation: probability distributions.
    Fogedby HC
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt A):5065-80. PubMed ID: 11969463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermittent many-body dynamics at equilibrium.
    Danieli C; Campbell DK; Flach S
    Phys Rev E; 2017 Jun; 95(6-1):060202. PubMed ID: 28709247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equilibrium sampling by reweighting nonequilibrium simulation trajectories.
    Yang C; Wan B; Xu S; Wang Y; Zhou X
    Phys Rev E; 2016 Mar; 93(3):033309. PubMed ID: 27078486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Gaussian equilibrium in a long-range Hamiltonian system.
    Latora V; Rapisarda A; Tsallis C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056134. PubMed ID: 11736041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Path integral Liouville dynamics for thermal equilibrium systems.
    Liu J
    J Chem Phys; 2014 Jun; 140(22):224107. PubMed ID: 24929374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equilibrium distributions of dipalmitoyl phosphatidylcholine and dilauroyl phosphatidylcholine in a mixed lipid bilayer: atomistic semigrand canonical ensemble simulations.
    de Joannis J; Jiang Y; Yin F; Kindt JT
    J Phys Chem B; 2006 Dec; 110(51):25875-82. PubMed ID: 17181235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concentration-dependent and configuration-dependent interactions of monovalent ions with an RNA tetraloop.
    Miner JC; García AE
    J Chem Phys; 2018 Jun; 148(22):222837. PubMed ID: 29907048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motif distributions in phase-space networks for characterizing experimental two-phase flow patterns with chaotic features.
    Gao ZK; Jin ND; Wang WX; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016210. PubMed ID: 20866710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boundary-equilibrium bifurcations in piecewise-smooth slow-fast systems.
    Kowalczyk P; Glendinning P
    Chaos; 2011 Jun; 21(2):023126. PubMed ID: 21721768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 55.