These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 9895920)

  • 1. Eikonal calculations of electron capture by relativistic projectiles.
    Anholt R; Eichler J
    Phys Rev A Gen Phys; 1985 May; 31(5):3505-3508. PubMed ID: 9895920
    [No Abstract]   [Full Text] [Related]  

  • 2. Relativistic eikonal theory of electron capture.
    Eichler J
    Phys Rev A Gen Phys; 1985 Jul; 32(1):112-121. PubMed ID: 9896031
    [No Abstract]   [Full Text] [Related]  

  • 3. Studies of relativistic uranium nuclei with dielectric track detectors.
    Ahlen SP; Tarlé G; Price PB
    Science; 1982 Sep; 217(4565):1139-40. PubMed ID: 17740969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross sections for bare and dressed carbon ions in water and neon.
    Liamsuwan T; Nikjoo H
    Phys Med Biol; 2013 Feb; 58(3):641-72. PubMed ID: 23318561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relativistic continuum-continuum coupling in the dissociation of halo nuclei.
    Bertulani CA
    Phys Rev Lett; 2005 Feb; 94(7):072701. PubMed ID: 15783810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of Effective Core Potentials for Density Functional Calculations on 3d Transition Metals.
    Xu X; Truhlar DG
    J Chem Theory Comput; 2012 Jan; 8(1):80-90. PubMed ID: 26592870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relativistic Effects on the Topology of the Electron Density.
    Eickerling G; Mastalerz R; Herz V; Scherer W; Himmel HJ; Reiher M
    J Chem Theory Comput; 2007 Nov; 3(6):2182-97. PubMed ID: 26636211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculations of nuclear quadrupole coupling in noble gas-noble metal fluorides: interplay of relativistic and electron correlation effects.
    Lantto P; Vaara J
    J Chem Phys; 2006 Nov; 125(17):174315. PubMed ID: 17100447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron correlation within the relativistic no-pair approximation.
    Almoukhalalati A; Knecht S; Jensen HJ; Dyall KG; Saue T
    J Chem Phys; 2016 Aug; 145(7):074104. PubMed ID: 27544084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interatomic Coulombic decay as a new source of low energy electrons in slow ion-dimer collisions.
    Iskandar W; Matsumoto J; Leredde A; Fléchard X; Gervais B; Guillous S; Hennecart D; Méry A; Rangama J; Zhou CL; Shiromaru H; Cassimi A
    Phys Rev Lett; 2015 Jan; 114(3):033201. PubMed ID: 25658997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic structure of stoichiometric and reduced ZnO from periodic relativistic all electron hybrid density functional calculations using numeric atom-centered orbitals.
    Viñes F; Illas F
    J Comput Chem; 2017 Mar; 38(8):523-529. PubMed ID: 28074481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of Effective Core Potentials and Basis Sets for Density Functional Calculations, Including Relativistic Effects, As Illustrated by Calculations on Arsenic Compounds.
    Xu X; Truhlar DG
    J Chem Theory Comput; 2011 Sep; 7(9):2766-79. PubMed ID: 26605468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully Relativistic Calculations of Faraday and Nuclear Spin-Induced Optical Rotation in Xenon.
    Ikäläinen S; Lantto P; Vaara J
    J Chem Theory Comput; 2012 Jan; 8(1):91-8. PubMed ID: 26592871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of Relativistic Effects and Electron Correlation in Structure Factors and Electron Density of Diphenyl Mercury and Triphenyl Bismuth.
    Bučinský L; Jayatilaka D; Grabowsky S
    J Phys Chem A; 2016 Aug; 120(33):6650-69. PubMed ID: 27434184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutual projectile-target ionization via the two-center dielectronic interaction in relativistic ion-atom collisions.
    Voitkiv AB; Najjari B; Ullrich J
    Phys Rev Lett; 2004 May; 92(21):213202. PubMed ID: 15245279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perturbative treatment of scalar-relativistic effects in coupled-cluster calculations of equilibrium geometries and harmonic vibrational frequencies using analytic second-derivative techniques.
    Michauk C; Gauss J
    J Chem Phys; 2007 Jul; 127(4):044106. PubMed ID: 17672680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilizing relativistic effective core potentials for accurate calculations of molecular polarizabilities on transition metal compounds.
    Labello NP; Ferreira AM; Kurtz HA
    J Phys Chem A; 2006 Dec; 110(50):13507-13. PubMed ID: 17165877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Second-order Born calculations for electron capture in relativistic U+U collisions.
    Decker F; Eichler J
    Phys Rev A; 1991 Aug; 44(3):2195-2197. PubMed ID: 9906189
    [No Abstract]   [Full Text] [Related]  

  • 19. Exact second-order Born calculations for relativistic electron capture.
    Decker F; Eichler J
    Phys Rev A; 1991 Jul; 44(1):377-387. PubMed ID: 9905691
    [No Abstract]   [Full Text] [Related]  

  • 20. Revisiting the geometry of nd10 (n+1)s0 [M(H2O)]p+ complexes using four-component relativistic DFT calculations and scalar relativistic correlated CSOV energy decompositions (M(p+) = Cu+, Zn2+, Ag+, Cd2+, Au+, Hg2+).
    Gourlaouen C; Piquemal JP; Saue T; Parisel O
    J Comput Chem; 2006 Jan; 27(2):142-56. PubMed ID: 16312018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.