These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 9896126)

  • 1. Single-electron-capture cross sections for 1-10-keV Li+ ions in alkaline-earth vapors.
    Coggiola MJ; Bae YK; Peterson JR
    Phys Rev A Gen Phys; 1985 Aug; 32(2):784-788. PubMed ID: 9896126
    [No Abstract]   [Full Text] [Related]  

  • 2. Cross sections for bare and dressed carbon ions in water and neon.
    Liamsuwan T; Nikjoo H
    Phys Med Biol; 2013 Feb; 58(3):641-72. PubMed ID: 23318561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionization cross sections for 10-300-keV/u and electron-capture cross sections for 5-150-keV/u 3He2+ ions in gases.
    Rudd ME; Goffe TV; Itoh A
    Phys Rev A Gen Phys; 1985 Oct; 32(4):2128-2133. PubMed ID: 9896324
    [No Abstract]   [Full Text] [Related]  

  • 4. Cross sections for ionization of gases by 10-2000-keV He+ ions and for electron capture and loss by 5-350-keV He+ ions.
    Rudd ME; Goffe TV; Itoh A; DuBois RD
    Phys Rev A Gen Phys; 1985 Aug; 32(2):829-835. PubMed ID: 9896133
    [No Abstract]   [Full Text] [Related]  

  • 5. Total single-electron-capture cross sections for impact of H+, H2 +, He+, and Ne+ (2-20 keV) on Li.
    Aumayr F; Winter H
    Phys Rev A Gen Phys; 1985 Jan; 31(1):67-71. PubMed ID: 9895454
    [No Abstract]   [Full Text] [Related]  

  • 6. Total, partial, and electron-capture cross sections for ionization of water vapor by 20-150 keV protons.
    Gobet F; Farizon B; Farizon M; Gaillard MJ; Carré M; Lezius M; Scheier P; Märk TD
    Phys Rev Lett; 2001 Apr; 86(17):3751-4. PubMed ID: 11329315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge transfer and ionisation by intermediate-energy heavy ions.
    Toburen LH; McLawhorn SL; McLawhorn RA; Evans NL; Justiniano EL; Shinpaugh JL; Schultz DR; Reinhold CO
    Radiat Prot Dosimetry; 2006; 122(1-4):22-5. PubMed ID: 17132666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical investigation of the structures, stabilities, and NLO responses of calcium-doped pyridazine: alkaline-earth-based alkaline salt electrides.
    Wang YF; Huang J; Jia L; Zhou G
    J Mol Graph Model; 2014 Feb; 47():77-82. PubMed ID: 24361791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron capture from Li(2s) by doubly charged ions (5-40 keV).
    Aumayr F; Lakits G; Winter H
    Phys Rev A Gen Phys; 1986 Feb; 33(2):846-850. PubMed ID: 9896694
    [No Abstract]   [Full Text] [Related]  

  • 10. An energy-loss model for low- and intermediate-energy carbon projectiles in water.
    Liamsuwan T; Nikjoo H
    Int J Radiat Biol; 2012 Jan; 88(1-2):45-9. PubMed ID: 21913814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radial secondary electron dose profiles and biological effects in light-ion beams based on analytical and Monte Carlo calculations using distorted wave cross sections.
    Wiklund K; Olivera GH; Brahme A; Lind BK
    Radiat Res; 2008 Jul; 170(1):83-92. PubMed ID: 18582149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum degenerate mixtures of alkali and alkaline-earth-like atoms.
    Hara H; Takasu Y; Yamaoka Y; Doyle JM; Takahashi Y
    Phys Rev Lett; 2011 May; 106(20):205304. PubMed ID: 21668241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Doping of alkali, alkaline-earth, and transition metals in covalent-organic frameworks for enhancing CO2 capture by first-principles calculations and molecular simulations.
    Lan J; Cao D; Wang W; Smit B
    ACS Nano; 2010 Jul; 4(7):4225-37. PubMed ID: 20568707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionization and Single and Double Electron Capture in Proton-Ar Collisions.
    Jorge A; Illescas C; Méndez L; Rabadán I
    J Phys Chem A; 2018 Mar; 122(9):2523-2534. PubMed ID: 29425451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple electron capture from isolated protein poly-anions in collision with slow highly charged ions.
    Milosavljević AR; Rousseau P; Domaracka A; Huber BA; Giuliani A
    Phys Chem Chem Phys; 2017 Aug; 19(30):19691-19698. PubMed ID: 28524199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analogy of the coordination chemistry of alkaline earth metal and lanthanide Ln(2+) ions: the isostructural zoo of mixed metal cages [IM(OtBu)4{Li(thf)}4(OH)] (M=Ca, Sr, Ba, Eu), [MM'6(OPh)8(thf)6] (M=Ca, Sr, Ba, Sm, Eu, M'=Li, Na), and their derivatives with 1,2-dimethoxyethane.
    Maudez W; Meuwly M; Fromm KM
    Chemistry; 2007; 13(29):8302-16. PubMed ID: 17639546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compact Fitting Formulas for Electron-Impact Cross Sections.
    Kim YK
    J Res Natl Inst Stand Technol; 1992; 97(6):689-692. PubMed ID: 28053452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alkali and alkaline-earth-metalated forms of calix[4]arenes: synthons in the synthesis of transition metal complexes.
    Guillemot G; Solari E; Rizzoli C; Floriani C
    Chemistry; 2002 May; 8(9):2072-80. PubMed ID: 11981892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theoretical study of alkaline-earthides Li(NH
    Zhu L; Xue K; Hou J
    J Mol Model; 2019 May; 25(6):150. PubMed ID: 31065798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Static second hyperpolarizability of inverse sandwich compounds (M
    Hatua K; Mondal A; Nandi PK
    Phys Chem Chem Phys; 2018 May; 20(19):13331-13339. PubMed ID: 29717731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.