These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 9896459)
1. Application of the relativistic random-phase approximation to Xe 5s photoionization. Deshmukh PC; Manson ST Phys Rev A Gen Phys; 1985 Nov; 32(5):3109. PubMed ID: 9896459 [No Abstract] [Full Text] [Related]
2. Nondipole effects in the photoionization of xe 4d5/2 and 4d3/2: evidence for quadrupole satellites. Hemmers O; Guillemin R; Rolles D; Wolska A; Lindle DW; Cheng KT; Johnson WR; Zhou HL; Manson ST Phys Rev Lett; 2004 Sep; 93(11):113001. PubMed ID: 15447334 [TBL] [Abstract][Full Text] [Related]
4. Photoionization of Al+ ions: A relativistic random-phase-approximation study. Deshmukh PC; Nasreen G; Manson ST Phys Rev A Gen Phys; 1988 Jul; 38(1):504-505. PubMed ID: 9900193 [No Abstract] [Full Text] [Related]
5. Extensive relativistic-random-phase-approximation study of photoionization from atomic ytterbium. Deshmukh PC; Manson ST Phys Rev A Gen Phys; 1986 Dec; 34(6):4757-4761. PubMed ID: 9897860 [No Abstract] [Full Text] [Related]
6. Dramatic nondipole effects in low-energy photoionization: experimental and theoretical study of Xe 5s. Hemmers O; Guillemin R; Kanter EP; Krässig B; Lindle DW; Southworth SH; Wehlitz R; Baker J; Hudson A; Lotrakul M; Rolles D; Stolte WC; Tran IC; Wolska A; Yu SW; Amusia MY; Cheng KT; Chernysheva LV; Johnson WR; Manson ST Phys Rev Lett; 2003 Aug; 91(5):053002. PubMed ID: 12906593 [TBL] [Abstract][Full Text] [Related]
7. Low-energy photoionization of alkali-metal atoms: Relativistic random-phase-approximation calculations. Fink MG; Johnson WR Phys Rev A Gen Phys; 1986 Nov; 34(5):3754-3759. PubMed ID: 9897719 [No Abstract] [Full Text] [Related]
8. Photoionization of beryllium in the multiconfiguration relativistic random-phase approximation. Hsin-Chang Chi; Keh-Ning Huang Phys Rev A; 1991 May; 43(9):4742-4745. PubMed ID: 9905592 [No Abstract] [Full Text] [Related]
9. Relaxed relativistic random-phase-approximation calculations of photoionization amplitudes and phases for the 4d subshell of xenon. Johnson WR; Cheng KT Phys Rev A; 1992 Sep; 46(5):2952-2954. PubMed ID: 9908457 [No Abstract] [Full Text] [Related]
10. Photoionization of the outer shells of radon and radium: Relativistic random-phase approximation for high-Z atoms. Deshmukh PC; Radojevic V; Manson ST Phys Rev A; 1992 May; 45(9):6339-6348. PubMed ID: 9907755 [No Abstract] [Full Text] [Related]
11. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer. Hanni M; Lantto P; Ilias M; Jensen HJ; Vaara J J Chem Phys; 2007 Oct; 127(16):164313. PubMed ID: 17979344 [TBL] [Abstract][Full Text] [Related]
12. Optical threshold excitation functions of Xe 5s,5p photoionization satellites near the 5s-1 Cooper minimum. Ukai M; Terazawa N; Chikahiro Y; Kameta K; Kouchi N; Hatano Y; Tanaka K Phys Rev A; 1992 Jan; 45(1):R15-R18. PubMed ID: 9906766 [No Abstract] [Full Text] [Related]
13. Strong electron correlation in photoionization of spin-orbit doublets. Amusia MY; Chernysheva LV; Manson ST; Msezane AM; Radojević V Phys Rev Lett; 2002 Mar; 88(9):093002. PubMed ID: 11864000 [TBL] [Abstract][Full Text] [Related]
14. Dynamical relativistic effects in photoionization: spin-orbit-resolved angular distributions of xenon 4d photoelectrons near the Cooper minimum. Wang H; Snell G; Hemmers O; Sant'Anna MM; Sellin I; Berrah N; Lindle DW; Deshmukh PC; Haque N; Manson ST Phys Rev Lett; 2001 Sep; 87(12):123004. PubMed ID: 11580505 [TBL] [Abstract][Full Text] [Related]
15. Absolute measurements and theoretical calculations of photoionization cross sections along the isonuclear sequence of multiply charged barium ions. Bizau JM; Cubaynes D; Esteva JM; Wuilleumier FJ; Blancard C; Bruneau J; Champeaux JP; Compant La Fontaine A; Couillaud C; Marmoret R; Rémond C; Hitz D; Delaunay M; Haque N; Deshmukh PC; Zhou HL; Manson ST Phys Rev Lett; 2001 Dec; 87(27 Pt 1):273002. PubMed ID: 11800876 [TBL] [Abstract][Full Text] [Related]
16. Theoretical study of the NMR chemical shift of Xe in supercritical condition. Lacerda EG; Sauer SPA; Mikkelsen KV; Coutinho K; Canuto S J Mol Model; 2018 Feb; 24(3):62. PubMed ID: 29464335 [TBL] [Abstract][Full Text] [Related]
17. (129)Xe chemical shift by the perturbational relativistic method: xenon fluorides. Lantto P; Vaara J J Chem Phys; 2007 Aug; 127(8):084312. PubMed ID: 17764253 [TBL] [Abstract][Full Text] [Related]
18. 129Xe NMR chemical shift in Xe@C60 calculated at experimental conditions: essential role of the relativity, dynamics, and explicit solvent. Standara S; Kulhánek P; Marek R; Straka M J Comput Chem; 2013 Aug; 34(22):1890-8. PubMed ID: 23703381 [TBL] [Abstract][Full Text] [Related]
19. Toward calculations of the 129Xe chemical shift in Xe@C60 at experimental conditions: relativity, correlation, and dynamics. Straka M; Lantto P; Vaara J J Phys Chem A; 2008 Mar; 112(12):2658-68. PubMed ID: 18303877 [TBL] [Abstract][Full Text] [Related]
20. Exploring new 129Xe chemical shift ranges in HXeY compounds: hydrogen more relativistic than xenon. Lantto P; Standara S; Riedel S; Vaara J; Straka M Phys Chem Chem Phys; 2012 Aug; 14(31):10944-52. PubMed ID: 22782133 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]