These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 9896492)

  • 1. Coupling of a high-sensitivity superconducting amplifier to a gravitational-wave antenna.
    Carelli P; Castellano MG; Cosmelli C; Foglietti V; Modena I
    Phys Rev A Gen Phys; 1985 Dec; 32(6):3258-3265. PubMed ID: 9896492
    [No Abstract]   [Full Text] [Related]  

  • 2. Erratum: Coupling of a high-sensitivity superconducting amplifier to a gravitational-wave antenna.
    Carelli P; Castellano MG; Cosmelli C; Foglietti V; Modena I
    Phys Rev A Gen Phys; 1986 Nov; 34(5):4485. PubMed ID: 9897817
    [No Abstract]   [Full Text] [Related]  

  • 3. Torsion-bar antenna for low-frequency gravitational-wave observations.
    Ando M; Ishidoshiro K; Yamamoto K; Yagi K; Kokuyama W; Tsubono K; Takamori A
    Phys Rev Lett; 2010 Oct; 105(16):161101. PubMed ID: 21230958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase-noise properties of an ytterbium-doped fiber amplifier for the Laser Interferometer Space Antenna.
    Tröbs M; Wessels P; Fallnich C
    Opt Lett; 2005 Apr; 30(7):789-91. PubMed ID: 15832939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interferometric antenna response for gravitational-wave detection.
    Fabbro RD; Montelatici V
    Appl Opt; 1995 Jul; 34(21):4380-96. PubMed ID: 21052273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential phase-noise properties of a ytterbium-doped fiber amplifier for the Laser Interferometer Space Antenna.
    Tröbs M; Barke S; Theeg T; Kracht D; Heinzel G; Danzmann K
    Opt Lett; 2010 Feb; 35(3):435-7. PubMed ID: 20125746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ultralow noise current amplifier based on superconducting quantum interference device for high sensitivity applications.
    Granata C; Vettoliere A; Russo M
    Rev Sci Instrum; 2011 Jan; 82(1):013901. PubMed ID: 21280839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Readout and control of a power-recycled interferometric gravitational-wave antenna.
    Fritschel P; Bork R; González G; Mavalvala N; Ouimette D; Rong H; Sigg D; Zucker M
    Appl Opt; 2001 Oct; 40(28):4988-98. PubMed ID: 18364777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Weber-type gravitational wave antenna with two resonant transducers: A new tool for gravitational wave signal identification.
    Canzoniere M; Majorana E; Ogawa Y; Rapagnani P; Ricci F
    Phys Rev D Part Fields; 1993 Jun; 47(12):5233-5237. PubMed ID: 10015543
    [No Abstract]   [Full Text] [Related]  

  • 10. Possibility of direct measurement of the acceleration of the universe using 0.1 Hz band laser interferometer gravitational wave antenna in space.
    Seto N; Kawamura S; Nakamura T
    Phys Rev Lett; 2001 Nov; 87(22):221103. PubMed ID: 11736393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nd:YVO
    Thies F; Bode N; Oppermann P; Frede M; Schulz B; Willke B
    Opt Lett; 2019 Feb; 44(3):719-722. PubMed ID: 30702719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastooptical antenna for detection of gravitational radiation.
    Boyer GR; Lamouroux BF; Prade BS; Vinet JY
    Appl Opt; 1980 Feb; 19(3):382-5. PubMed ID: 20216858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High sensitivity gravitational wave antenna with parametric transducer readout.
    Blair DG; Ivanov EN; Tobar ME; Turner PJ; van Kann F ; Heng IS
    Phys Rev Lett; 1995 Mar; 74(11):1908-1911. PubMed ID: 10057794
    [No Abstract]   [Full Text] [Related]  

  • 14. Resonant-mass detectors of gravitational radiation.
    Michelson PF; Price JC; Taber RC
    Science; 1987 Jul; 237(4811):150-7. PubMed ID: 17830923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gravitational-wave stochastic background from cosmic strings.
    Siemens X; Mandic V; Creighton J
    Phys Rev Lett; 2007 Mar; 98(11):111101. PubMed ID: 17501038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A near-quantum-limited Josephson traveling-wave parametric amplifier.
    Macklin C; O'Brien K; Hover D; Schwartz ME; Bolkhovsky V; Zhang X; Oliver WD; Siddiqi I
    Science; 2015 Oct; 350(6258):307-10. PubMed ID: 26338795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low-noise transimpedance amplifier for the detection of "Violin-Mode" resonances in Advanced Laser Interferometer Gravitational wave Observatory suspensions.
    Lockerbie NA; Tokmakov KV
    Rev Sci Instrum; 2014 Nov; 85(11):114705. PubMed ID: 25430131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High power single frequency solid state master oscillator power amplifier for gravitational wave detection.
    Basu C; Wessels P; Neumann J; Kracht D
    Opt Lett; 2012 Jul; 37(14):2862-4. PubMed ID: 22825159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss factors of mirrors for a gravitational wave antenna.
    Sato S; Miyoki S; Ohashi M; Fujimoto MK; Yamazaki T; Fukushima M; Ueda A; Ueda K; Watanabe K; Nakamura K; Etoh K; Kitajima N; Ito K; Kataoka I
    Appl Opt; 1999 May; 38(13):2880-5. PubMed ID: 18319869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upper limit on gravitational wave backgrounds at 0.2 Hz with a torsion-bar antenna.
    Ishidoshiro K; Ando M; Takamori A; Takahashi H; Okada K; Matsumoto N; Kokuyama W; Kanda N; Aso Y; Tsubono K
    Phys Rev Lett; 2011 Apr; 106(16):161101. PubMed ID: 21599349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.