These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 989657)
21. Soil Pseudomonas community structure and its antagonism towards Rhizoctonia solani under the stress of acetochlor. Wu M; Zhang X; Zhang H; Zhang Y; Li X; Zhou Q; Zhang C Bull Environ Contam Toxicol; 2009 Sep; 83(3):313-7. PubMed ID: 19418006 [TBL] [Abstract][Full Text] [Related]
22. [Effect of a preparation from Chaetomium fungi on the growth of phytopathogenic fungi]. Tomilova OG; Shternshis MV Prikl Biokhim Mikrobiol; 2006; 42(1):76-80. PubMed ID: 16521581 [TBL] [Abstract][Full Text] [Related]
23. Biocontrol of Rhizoctonia solani, the causal agent of bean damping-off by fluorescent pseudomonads. Afsharmanesh H; Ahmadzadeh M; Sharifi-Tehrani A Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):1021-9. PubMed ID: 17390854 [TBL] [Abstract][Full Text] [Related]
24. In field survival of Rhizoctonia solani in soil and in diseased sugarbeets. Herr LJ Can J Microbiol; 1976 Jul; 22(7):983-8. PubMed ID: 963618 [TBL] [Abstract][Full Text] [Related]
25. Mode of action of acibenzolar-S-methyl against sheath blight of rice, caused by Rhizoctonia solani Kühn. Rohilla R; Singh US; Singh RL Pest Manag Sci; 2002 Jan; 58(1):63-9. PubMed ID: 11838287 [TBL] [Abstract][Full Text] [Related]
26. Powder formulation of Burkholderia cepacia for control of rape seed damping-off caused by Rhizoctonia solani. Sharifi-Tehrani A; Ahmadzadeh M; Sarani S; Farzaneh M Commun Agric Appl Biol Sci; 2007; 72(2):129-36. PubMed ID: 18399433 [TBL] [Abstract][Full Text] [Related]
27. Assessment of the diversity, and antagonism towards Rhizoctonia solani AG3, of Pseudomonas species in soil from different agricultural regimes. Garbeva P; Veen JA; Elsas JD FEMS Microbiol Ecol; 2004 Jan; 47(1):51-64. PubMed ID: 19712346 [TBL] [Abstract][Full Text] [Related]
28. Improvement of soil characteristics and growth of Dorycnium pentaphyllum by amendment with agrowastes and inoculation with AM fungi and/or the yeast Yarowia lipolytica. Medina A; Vassileva M; Caravaca F; Roldán A; Azcón R Chemosphere; 2004 Aug; 56(5):449-56. PubMed ID: 15212910 [TBL] [Abstract][Full Text] [Related]
29. Soil suppressiveness to Rhizoctonia solani and microbial diversity. Bakker Y; Van Loon FM; Schneider JH Commun Agric Appl Biol Sci; 2005; 70(3):29-33. PubMed ID: 16637155 [TBL] [Abstract][Full Text] [Related]
30. Chitin- and Keratin-Rich Soil Amendments Suppress Rhizoctonia solani Disease via Changes to the Soil Microbial Community. Andreo-Jimenez B; Schilder MT; Nijhuis EH; Te Beest DE; Bloem J; Visser JHM; van Os G; Brolsma K; de Boer W; Postma J Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33771785 [TBL] [Abstract][Full Text] [Related]
31. Amendment with peony root bark improves the biocontrol efficacy of Trichoderma harzianum against Rhizoctonia solani. Lee TO; Khan Z; Kim SG; Kim YH J Microbiol Biotechnol; 2008 Sep; 18(9):1537-43. PubMed ID: 18852509 [TBL] [Abstract][Full Text] [Related]
32. Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Kai M; Effmert U; Berg G; Piechulla B Arch Microbiol; 2007 May; 187(5):351-60. PubMed ID: 17180381 [TBL] [Abstract][Full Text] [Related]
33. Effect of above-ground plant species on soil microbial community structure and its impact on suppression of Rhizoctonia solani AG3. Garbeva P; Postma J; van Veen JA; van Elsas JD Environ Microbiol; 2006 Feb; 8(2):233-46. PubMed ID: 16423012 [TBL] [Abstract][Full Text] [Related]
34. Evaluation of the phytoremediation potential of four plant species for dibenzofuran-contaminated soil. Wang Y; Oyaizu H J Hazard Mater; 2009 Sep; 168(2-3):760-4. PubMed ID: 19321258 [TBL] [Abstract][Full Text] [Related]
35. Early induction of the Arabidopsis GSTF8 promoter by specific strains of the fungal pathogen Rhizoctonia solani. Perl-Treves R; Foley RC; Chen W; Singh KB Mol Plant Microbe Interact; 2004 Jan; 17(1):70-80. PubMed ID: 14714870 [TBL] [Abstract][Full Text] [Related]
36. Effect of application timing and method on efficacy and phytotoxicity of 1,3-D, chloropicrin and metam-sodium combinations in squash plasticulture. Desaeger JA; Seebold KW; Csinos AS Pest Manag Sci; 2008 Mar; 64(3):230-8. PubMed ID: 18181144 [TBL] [Abstract][Full Text] [Related]
37. [Contribution to the problem of microbially induced urea transformation in soil. I. On the ability of urea utilization by soil micro-organisms (author's transl)]. Hickisch B; Müller G Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1977; 132(5-6):479-96. PubMed ID: 602475 [TBL] [Abstract][Full Text] [Related]
38. Screening of bioagents against root rot of mung bean caused by Rhizoctonia solani. Singh S; Chand H Commun Agric Appl Biol Sci; 2006; 71(4):33-5. PubMed ID: 17612349 [TBL] [Abstract][Full Text] [Related]
39. Biostimulation of micro-organisms from sugarcane bagasse pith for the removal of weathered hydrocarbon from soil. Pèrez-Armendáriz B; Loera-Corral O; Fernández-Linares L; Esparza-García F; Rodríguez-Vázquez R Lett Appl Microbiol; 2004; 38(5):373-7. PubMed ID: 15059206 [TBL] [Abstract][Full Text] [Related]
40. The effect of the herbicide atrazine on rhizosphere microflora of broad bean plants, infested with Fusarium oxysporum f. fabae and Rhizoctonia solani. Hamed AS; Mahmoud SA; Zaki MM; Sahab AF Zentralbl Bakteriol Naturwiss; 1980; 135(1):60-9. PubMed ID: 7376757 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]