These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Measurement of the fundamental thermal noise limit in a cryogenic sapphire frequency standard using bimodal maser oscillations. Benmessai K; Creedon DL; Tobar ME; Bourgeois PY; Kersalé Y; Giordano V Phys Rev Lett; 2008 Jun; 100(23):233901. PubMed ID: 18643500 [TBL] [Abstract][Full Text] [Related]
8. Collisional frequency shifts and line broadening in the cryogenic deuterium maser. Tiesinga E; Crampton SB; Verhaar BJ; Stoof HT Phys Rev A; 1993 May; 47(5):4342-4347. PubMed ID: 9909442 [No Abstract] [Full Text] [Related]
9. Cryogenic H maser in a strong B field. Maan AC; Stoof HT; Verhaar BJ Phys Rev A; 1990 Mar; 41(5):2614-2620. PubMed ID: 9903394 [No Abstract] [Full Text] [Related]
10. A gravitationally lensed water maser in the early Universe. Impellizzeri CM; McKean JP; Castangia P; Roy AL; Henkel C; Brunthaler A; Wucknitz O Nature; 2008 Dec; 456(7224):927-9. PubMed ID: 19092930 [TBL] [Abstract][Full Text] [Related]
11. An experimental study for the compact hydrogen maser with a TE111 septum cavity. Wang Q; Zhai Z; Zhang W; Lin C IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):197-200. PubMed ID: 18238531 [TBL] [Abstract][Full Text] [Related]
12. Nanosecond time-resolved characterization of a pentacene-based room-temperature MASER. Salvadori E; Breeze JD; Tan KJ; Sathian J; Richards B; Fung MW; Wolfowicz G; Oxborrow M; Alford NM; Kay CW Sci Rep; 2017 Feb; 7():41836. PubMed ID: 28169331 [TBL] [Abstract][Full Text] [Related]
13. Environmental factors and hydrogen maser frequency stability. Parker TE IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):745-51. PubMed ID: 18238475 [TBL] [Abstract][Full Text] [Related]
14. Shock-excited OH maser emission outlining the galactic center supernova remnant G359.1-0.05. Yusef-Zadeh F; Uchida KI; Roberts D Science; 1995 Dec; 270(5243):1801-4. PubMed ID: 8525369 [TBL] [Abstract][Full Text] [Related]
15. Tests of Lorentz invariance using a microwave resonator. Wolf P; Bize S; Clairon A; Luiten AN; Santarelli G; Tobar ME Phys Rev Lett; 2003 Feb; 90(6):060402. PubMed ID: 12633279 [TBL] [Abstract][Full Text] [Related]
16. Proposal for a room-temperature diamond maser. Jin L; Pfender M; Aslam N; Neumann P; Yang S; Wrachtrup J; Liu RB Nat Commun; 2015 Sep; 6():8251. PubMed ID: 26394758 [TBL] [Abstract][Full Text] [Related]
17. Polarized maser growth. Melrose DB; Judge AC Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056408. PubMed ID: 15600766 [TBL] [Abstract][Full Text] [Related]
18. Enhanced magnetic Purcell effect in room-temperature masers. Breeze J; Tan KJ; Richards B; Sathian J; Oxborrow M; Alford NM Nat Commun; 2015 Feb; 6():6215. PubMed ID: 25698634 [TBL] [Abstract][Full Text] [Related]
19. Regeneratively mode-locked fiber laser with a repetition rate stability of 4.9x10-15 using a hydrogen maser phase-locked loop. Yoshida M; Hirayama T; Nakazawa M; Hagimoto K; Ikegami T Opt Lett; 2007 Jul; 32(13):1827-9. PubMed ID: 17603583 [TBL] [Abstract][Full Text] [Related]
20. Transient solutions to a three level maser. Narchal ML; Dhawan MM; Monga MR Appl Opt; 1967 Apr; 6(4):723-6. PubMed ID: 20057834 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]