BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 9898)

  • 1. Effect of acid and salt concentration in fresh-pack pickles on the growth of Clostridium botulinum spores.
    Ito KA; Chen JK; Lerke PA; Seeger ML; Unverferth JA
    Appl Environ Microbiol; 1976 Jul; 32(1):121-4. PubMed ID: 9898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory effect of combinations of heat treatment, pH, and sodium chloride on a growth from spores of nonproteolytic Clostridium botulinum at refrigeration temperature.
    Graham AF; Mason DR; Peck MW
    Appl Environ Microbiol; 1996 Jul; 62(7):2664-8. PubMed ID: 8779606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The synergic interaction between environmental factors (pH and NaCl) and the physiological state (vegetative cells and spores) provides new possibilities for optimizing processes to manage risk of C. sporogenes spoilage.
    Boix E; Couvert O; André S; Coroller L
    Food Microbiol; 2021 Dec; 100():103832. PubMed ID: 34416948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pH and NaCl on growth from spores of non-proteolytic Clostridium botulinum at chill temperature.
    Graham AF; Mason DR; Maxwell FJ; Peck MW
    Lett Appl Microbiol; 1997 Feb; 24(2):95-100. PubMed ID: 9081311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictive model of the effect of temperature, pH and sodium chloride on growth from spores of non-proteolytic Clostridium botulinum.
    Graham AF; Mason DR; Peck MW
    Int J Food Microbiol; 1996 Aug; 31(1-3):69-85. PubMed ID: 8880298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of sodium chloride and pH on the outgrowth of spores of type E Clostridium botulinum at optimal and suboptimal temperatures.
    Segner WP; Schmidt CF; Boltz JK
    Appl Microbiol; 1966 Jan; 14(1):49-54. PubMed ID: 5330680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth and toxin production by Clostridium botulinum in moldy tomato juice.
    Huhtanen CN; Naghski J; Custer CS; Russell RW
    Appl Environ Microbiol; 1976 Nov; 32(5):711-5. PubMed ID: 10844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the germination kinetics of clostridium botulinum 56A spores as affected by temperature, pH, and sodium chloride.
    Chea FP; Chen Y; Montville TJ; Schaffner DW
    J Food Prot; 2000 Aug; 63(8):1071-9. PubMed ID: 10945583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined effect of water activity, pH and temperature on the growth of Clostridium botulinum from spore and vegetative cell inocula.
    Baird-Parker AC; Freame B
    J Appl Bacteriol; 1967 Dec; 30(3):420-9. PubMed ID: 4865469
    [No Abstract]   [Full Text] [Related]  

  • 10. Factors influencing Clostridium botulinum spore germination, outgrowth, and toxin formation in acidified media.
    Wong DM; Young-Perkins KE; Merson RL
    Appl Environ Microbiol; 1988 Jun; 54(6):1446-50. PubMed ID: 3046489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth potential of Clostridium botulinum in fresh mushrooms packaged in semipermeable plastic film.
    Sugiyama H; Yang KH
    Appl Microbiol; 1975 Dec; 30(6):964-9. PubMed ID: 1108793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of nonproteolytic Clostridium botulinum types B and E in crab analogs by combinations of heat pasteurization and water phase salt.
    Peterson ME; Paranjpye RN; Poysky FT; Pelroy GA; Eklund MW
    J Food Prot; 2002 Jan; 65(1):130-9. PubMed ID: 11808784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic interaction between pH and NaCl in the limits of germination and outgrowth of Clostridium sporogenes and Group I Clostridium botulinum vegetative cells and spores after heat treatment.
    Boix E; Coroller L; Couvert O; Planchon S; van Vliet AHM; Brunt J; Peck MW; Rasetti-Escargueil C; Lemichez E; Popoff MR; André S
    Food Microbiol; 2022 Sep; 106():104055. PubMed ID: 35690448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimal growth temperature, sodium chloride tolerance, pH sensitivity, and toxin production of marine and terrestrial strains of Clostridium botulinum type C.
    Segner WP; Schmidt CF; Boltz JK
    Appl Microbiol; 1971 Dec; 22(6):1025-9. PubMed ID: 4944801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurized pork slurry.
    Gibson AM; Bratchell N; Roberts TA
    J Appl Bacteriol; 1987 Jun; 62(6):479-90. PubMed ID: 3305458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of storage time and temperature on the survival of Clostridium botulinum spores in acid media.
    Odlaug TE; Pflug IJ
    Appl Environ Microbiol; 1977 Jul; 34(1):30-3. PubMed ID: 18990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the effect of acetylsalicylic acid on Clostridium botulinum growth and toxin production.
    Ma L; Zhang G; Sobel J; Doyle MP
    J Food Prot; 2007 Dec; 70(12):2860-3. PubMed ID: 18095444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Survival and outgrowth of Clostridium botulinum type E spores in smoked fish.
    Christiansen LN; Deffner J; Foster EM; Sugiyama H
    Appl Microbiol; 1968 Jan; 16(1):133-7. PubMed ID: 4865899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interrelationship of heat and relative humidity in the destruction of Clostridium botulinum type E spores on whitefish chubs.
    Pace PJ; Krumbiegel ER; Wisniewski HJ
    Appl Microbiol; 1972 Apr; 23(4):750-7. PubMed ID: 4553143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth and toxin production by Clostridium botulinum on inoculated fresh-cut packaged vegetables.
    Austin JW; Dodds KL; Blanchfield B; Farber JM
    J Food Prot; 1998 Mar; 61(3):324-8. PubMed ID: 9708304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.