BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 9898)

  • 21. Time-to-turbidity model for non-protective type B Clostridium botulinum.
    Whiting RC; Oriente JC
    Int J Food Microbiol; 1997 Apr; 36(1):49-60. PubMed ID: 9168314
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitation of pH- and salt-tolerant subpopulations from Clostridium botulinum.
    Montville TJ
    Appl Environ Microbiol; 1984 Jan; 47(1):28-30. PubMed ID: 6364971
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Survival studies with spores of Clostridium botulinum type E in pasteurized meat of the blue crab Callinectes sapidus.
    Cockey RR; Tatro MC
    Appl Microbiol; 1974 Apr; 27(4):629-33. PubMed ID: 4596746
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Failure of nisin to inhibit outgrowth of Clostridium botulinum in a model cured meat system.
    Rayman K; Malik N; Hurst A
    Appl Environ Microbiol; 1983 Dec; 46(6):1450-2. PubMed ID: 6362566
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clostridium botulinum growth and toxin production in tomato juice containing Aspergillus gracilis.
    Odlaug TE; Pflug IJ
    Appl Environ Microbiol; 1979 Mar; 37(3):496-504. PubMed ID: 36843
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of Clostridium perfringens spore germination and outgrowth by lemon juice and vinegar product in reduced NaCl roast beef.
    Li L; Valenzuela-Martinez C; Redondo M; Juneja VK; Burson DE; Thippareddi H
    J Food Sci; 2012 Nov; 77(11):M598-603. PubMed ID: 23163907
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth and toxin production by non-proteolytic and proteolytic Clostridium botulinum in cooked vegetables.
    Carlin F; Peck MW
    Lett Appl Microbiol; 1995 Mar; 20(3):152-6. PubMed ID: 7766071
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing.
    Lindström M; Kiviniemi K; Korkeala H
    Int J Food Microbiol; 2006 Apr; 108(1):92-104. PubMed ID: 16480785
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A predictive growth model for Clostridium botulinum during cooling of cooked uncured ground beef.
    Juneja VK; Purohit AS; Golden M; Osoria M; Glass KA; Mishra A; Thippareddi H; Devkumar G; Mohr TB; Minocha U; Silverman M; Schaffner DW
    Food Microbiol; 2021 Feb; 93():103618. PubMed ID: 32912576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Survey of pH and water activity in acidified bottled vegetables and meats (home processed) in relation to the potential growth of Clostridium botulinum].
    Mazzobre MF; Schebor C; Burin L; Chirife J
    Rev Argent Microbiol; 2000; 32(2):63-70. PubMed ID: 10885005
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical manipulation of the heat resistance of Clostridium botulinum spores.
    Alderton G; Ito KA; Chen JK
    Appl Environ Microbiol; 1976 Apr; 31(4):492-8. PubMed ID: 5056
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Growth and toxin production by Clostridium botulinum on sliced raw potatoes in a modified atmosphere with and without sulfite.
    Solomon HM; Rhodehamel EJ; Kautter DA
    J Food Prot; 1998 Jan; 61(1):126-8. PubMed ID: 9708268
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiplication of Clostridium botulinum in dead honey-bees and bee pupae, a likely source of heavy contamination of honey.
    Nakano H; Kizaki H; Sakaguchi G
    Int J Food Microbiol; 1994 Feb; 21(3):247-52. PubMed ID: 8024976
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Causes of variation in botulinal inhibition in perishable canned cured meat.
    Tompkin RB; Christiansen LN; Shaparis AB
    Appl Environ Microbiol; 1978 May; 35(5):886-9. PubMed ID: 350156
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growth and germination of proteolytic Clostridium botulinum in vegetable-based media.
    Braconnier A; Broussolle V; Dargaignaratz C; Nguyen-The C; Carlin F
    J Food Prot; 2003 May; 66(5):833-9. PubMed ID: 12747693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined effect of water activity and pH on inhibition of toxin production by Clostridium botulinum in cooked, vacuum-packed potatoes.
    Dodds KL
    Appl Environ Microbiol; 1989 Mar; 55(3):656-60. PubMed ID: 2648990
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Historical and contemporary NaCl concentrations affect the duration and distribution of lag times from individual spores of nonproteolytic clostridium botulinum.
    Webb MD; Pin C; Peck MW; Stringer SC
    Appl Environ Microbiol; 2007 Apr; 73(7):2118-27. PubMed ID: 17277206
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage.
    Johanningsmeier SD; Franco W; Perez-Diaz I; McFeeters RF
    J Food Sci; 2012 Jul; 77(7):M397-404. PubMed ID: 22757713
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prevalence of Clostridium botulinum in semipreserved meat products.
    Abrahamsson K; Riemann H
    Appl Microbiol; 1971 Mar; 21(3):543-4. PubMed ID: 4928608
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of prior refrigeration on botulinal outgrowth in perishable canned cured meat when temperature abused.
    Tompkin RB; Christiansen LN; Shaparis AB
    Appl Environ Microbiol; 1978 May; 35(5):863-6. PubMed ID: 350155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.