These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9898178)

  • 1. Double- and single-electron capture and loss in collisions of 1-2-MeV/u boron, oxygen, and silicon projectiles with helium atoms.
    Hippler R; Datz S; Miller PD; Pepmiller PL; Dittner PF
    Phys Rev A Gen Phys; 1987 Jan; 35(2):585-590. PubMed ID: 9898178
    [No Abstract]   [Full Text] [Related]  

  • 2. Cross sections of Nei+ recoil-ion production through pure ionization, electron loss, and electron capture of projectiles in 1.05-MeV/amu Arq++Ne collisions.
    Matsuo T; Tonuma T; Kumagai H; Tawara H
    Phys Rev A; 1994 Aug; 50(2):1178-1183. PubMed ID: 9911009
    [No Abstract]   [Full Text] [Related]  

  • 3. Charge distribution of Ar recoil ions produced in one- and two-electron capture collisions by 16-MeV Oq+ projectiles.
    Heber O; Sampoll G; Bandong BB; Watson RL
    Phys Rev A Gen Phys; 1989 Nov; 40(10):5601-5604. PubMed ID: 9901942
    [No Abstract]   [Full Text] [Related]  

  • 4. Bound-electron capture from surface atoms by heavy projectiles at grazing collisions.
    Gravielle MS; Miraglia JE
    Phys Rev A; 1994 Sep; 50(3):2425-2429. PubMed ID: 9911159
    [No Abstract]   [Full Text] [Related]  

  • 5. Strong evidence for enhanced multiple electron capture from surfaces in 46 MeV/u Pb81+ collisions with thin carbon foils.
    Bräuning H; Mokler PH; Liesen D; Bosch F; Franzke B; Krämer A; Kozhuharov C; Ludziejewski T; Ma X; Nolden F; Steck M; Stöhlker T; Dunford RW; Kanter EP; Bednarz G; Warczak A; Stachura Z; Tribedi L; Kambara T; Dauvergne D; Kirsch R; Cohen C
    Phys Rev Lett; 2001 Feb; 86(6):991-4. PubMed ID: 11177992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interatomic Coulombic decay as a new source of low energy electrons in slow ion-dimer collisions.
    Iskandar W; Matsumoto J; Leredde A; Fléchard X; Gervais B; Guillous S; Hennecart D; Méry A; Rangama J; Zhou CL; Shiromaru H; Cassimi A
    Phys Rev Lett; 2015 Jan; 114(3):033201. PubMed ID: 25658997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical description of the ejected-electron spectrum in collisions of 1.5-MeV/u F9+ with helium.
    Schultz DR; Reinhold CO
    Phys Rev A; 1994 Sep; 50(3):2390-2396. PubMed ID: 9911155
    [No Abstract]   [Full Text] [Related]  

  • 8. Molecular treatment of electron capture in atomic collisions in the meV- to keV-energy regime: Collisions of C5+ ions with H atoms and the effect of core electrons.
    Shimakura N; Koizumi S; Suzuki S; Kimura M
    Phys Rev A; 1992 Jun; 45(11):7876-7882. PubMed ID: 9906877
    [No Abstract]   [Full Text] [Related]  

  • 9. Rotationally inelastic collisions of excited NaK and NaCs molecules with noble gas and alkali atom perturbers.
    Jones J; Richter K; Price TJ; Ross AJ; Crozet P; Faust C; Malenda RF; Carlus S; Hickman AP; Huennekens J
    J Chem Phys; 2017 Oct; 147(14):144303. PubMed ID: 29031279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic total electron-capture cross sections from C-, O-, F-, and S-bearing molecular gases for ~MeV/u H+ and He+ projectiles.
    Varghese SL; Bissinger G; Joyce JM; Laubert R
    Phys Rev A Gen Phys; 1985 Apr; 31(4):2202-2209. PubMed ID: 9895751
    [No Abstract]   [Full Text] [Related]  

  • 11. A Monte Carlo track structure simulation code for the full-slowing-down carbon projectiles of energies 1 keV u(-1)-10 MeV u(-1) in water.
    Liamsuwan T; Nikjoo H
    Phys Med Biol; 2013 Feb; 58(3):673-701. PubMed ID: 23318579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density matrix for the H (n=3) atoms formed in electron-capture process of H+-helium collisions at 25-100 keV.
    Jain A; Lin CD; Fritsch W
    Phys Rev A Gen Phys; 1987 Apr; 35(7):3180-3182. PubMed ID: 9898533
    [No Abstract]   [Full Text] [Related]  

  • 13. Proof of principle of helium-beam radiography using silicon pixel detectors for energy deposition measurement, identification, and tracking of single ions.
    Gehrke T; Gallas R; Jäkel O; Martišíková M
    Med Phys; 2018 Feb; 45(2):817-829. PubMed ID: 29235123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociative electron attachment studies with hyperthermal Rydberg atoms.
    Buathong S; Dunning FB
    J Chem Phys; 2018 Sep; 149(10):104303. PubMed ID: 30219015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Erratum: Density matrix for the H(n=3) atoms formed in electron-capture process of H+-helium collisions at 25-100 keV.
    Jain A; Lin CD; Fritsch W
    Phys Rev A Gen Phys; 1988 May; 37(9):3611. PubMed ID: 9900118
    [No Abstract]   [Full Text] [Related]  

  • 16. X-rays from Coalescing Atoms.
    Meyerhof WE
    Science; 1976 Sep; 193(4256):839-48. PubMed ID: 17753616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Projectile-charge sign dependence of four-particle dynamics in helium double ionization.
    Fischer D; Moshammer R; Dorn A; Crespo López-Urrutia JR; Feuerstein B; Höhr C; Schröter CD; Hagmann S; Kollmus H; Mann R; Bapat B; Ullrich J
    Phys Rev Lett; 2003 Jun; 90(24):243201. PubMed ID: 12857190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dose point kernel for boron-11 decay and the cellular S values in boron neutron capture therapy.
    Ma Y; Geng J; Gao S; Bao S
    Med Phys; 2006 Dec; 33(12):4739-43. PubMed ID: 17278826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the Helium Dimer by Relativistic Highly Charged Projectiles.
    Najjari B; Wang Z; Voitkiv AB
    Phys Rev Lett; 2021 Nov; 127(20):203401. PubMed ID: 34860041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron capture in collisions of N5+ ions with H atoms from the meV to keV energy regions.
    Shimakura N; Kimura M
    Phys Rev A; 1991 Aug; 44(3):1659-1667. PubMed ID: 9906132
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.