These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 9898790)

  • 41. Transition from nonresonant to resonant random lasers by the geometrical confinement of disorder.
    Ghofraniha N; Viola I; Zacheo A; Arima V; Gigli G; Conti C
    Opt Lett; 2013 Dec; 38(23):5043-6. PubMed ID: 24281505
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nonresonant cavity as a long path absorption cell.
    Gebbie HA; Bohlander RA
    Appl Opt; 1972 Apr; 11(4):723-8. PubMed ID: 20119034
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of the multi-channel epileptiform EEG using the Markov chains formalism.
    Penczek P; Grochulski W
    Methods Inf Med; 1989 Jul; 28(3):160-7. PubMed ID: 2796758
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantum focusing and coherent control of nonresonant two-photon absorption in frequency domain.
    Li B; Xu Y; An L; Lin Q; Zhu H; Lin F; Li Y
    Opt Lett; 2014 Apr; 39(8):2443-6. PubMed ID: 24979014
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Resonance effects in electron-atom scattering in a chaotic nonresonant laser field.
    Unnikrishnan K
    Phys Rev A Gen Phys; 1986 Aug; 34(2):1031-1033. PubMed ID: 9897360
    [No Abstract]   [Full Text] [Related]  

  • 46. Nonresonant electron transfer and projectile K-electron excitation in ion-atom collisions.
    Clark M; Brandt D; Swenson JK; Shafroth SM
    Phys Rev Lett; 1985 Feb; 54(6):544-546. PubMed ID: 10031547
    [No Abstract]   [Full Text] [Related]  

  • 47. Interference control of nonlinear excitation in a multi-atom cavity quantum electrodynamics system.
    Yang G; Tan Z; Zou B; Zhu Y
    Opt Lett; 2014 Dec; 39(23):6695-8. PubMed ID: 25490655
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Potential models for the simulation of methane adsorption on graphene: development and CCSD(T) benchmarks.
    Vekeman J; G Cuesta I; Faginas-Lago N; Wilson J; Sánchez-Marín J; Sánchez de Merás A
    Phys Chem Chem Phys; 2018 Oct; 20(39):25518-25530. PubMed ID: 30277488
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Two-photon gateway in one-atom cavity quantum electrodynamics.
    Kubanek A; Ourjoumtsev A; Schuster I; Koch M; Pinkse PW; Murr K; Rempe G
    Phys Rev Lett; 2008 Nov; 101(20):203602. PubMed ID: 19113340
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Doubled single-frequency Nd:YLF ring laser coupled to a passive nonresonant cavity.
    Louyer Y; Juncar P; Plimmer MD; Badr T; Balembois F; Georges P; Himbert ME
    Appl Opt; 2004 Mar; 43(8):1773-6. PubMed ID: 15046182
    [TBL] [Abstract][Full Text] [Related]  

  • 51. New results for the OH (nu = 0,j = 0) + CO (nu = 0,j = 0) --> H + CO2 reaction: Five- and full-dimensional quantum dynamical study on several potential energy surfaces.
    Valero R; McCormack DA; Kroes GJ
    J Chem Phys; 2004 Mar; 120(9):4263-72. PubMed ID: 15268595
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cavity-enhanced optical controlling based on three-wave mixing in cavity-atom ensemble system.
    Hu XX; Zhao CL; Wang ZB; Zhang YL; Zou XB; Dong CH; Tang HX; Guo GC; Zou CL
    Opt Express; 2019 Mar; 27(5):6660-6671. PubMed ID: 30876246
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nonresonant background suppression in CARS spectra of dispersive media using phase mismatching.
    Scholten TA; Lucassen GW; De Mul FF; Greve J
    Appl Opt; 1989 Apr; 28(7):1387-400. PubMed ID: 20548669
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantum modelling of hydrogen chemisorption on graphene and graphite.
    Karlický F; Lepetit B; Lemoine D
    J Chem Phys; 2014 Mar; 140(12):124702. PubMed ID: 24697465
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electric quadrupole contribution to the nonresonant background of sum frequency generation at air/liquid interfaces.
    Yamaguchi S; Shiratori K; Morita A; Tahara T
    J Chem Phys; 2011 May; 134(18):184705. PubMed ID: 21568527
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ground state cooling of an optomechanical resonator assisted by a Λ-type atom.
    Zhang S; Zhang JQ; Zhang J; Wu CW; Wu W; Chen PX
    Opt Express; 2014 Nov; 22(23):28118-31. PubMed ID: 25402052
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Atom-surface interaction: Zero-point energy formalism.
    Paranjape VV
    Phys Rev B Condens Matter; 1985 Sep; 32(6):3479-3484. PubMed ID: 9937490
    [No Abstract]   [Full Text] [Related]  

  • 58. Prediction errors for state occupation and transition probabilities in multi-state models.
    Spitoni C; Lammens V; Putter H
    Biom J; 2018 Jan; 60(1):34-48. PubMed ID: 29067699
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhancement of Goos-Hänchen shift due to a Rydberg state.
    Asadpour SH; Hamedi HR; Jafari M
    Appl Opt; 2018 May; 57(15):4013-4019. PubMed ID: 29791374
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A general theoretical formalism for X-ray phase contrast imaging.
    Wu X; Liu H
    J Xray Sci Technol; 2003 Jan; 11(1):33-42. PubMed ID: 22388096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.