These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9898840)

  • 1. Generalized WKB approximation to nonrelativistic normalizations and phase shifts in a screened Coulomb potential.
    Stein J; Ron A; Goldberg IB; Pratt RH
    Phys Rev A Gen Phys; 1987 Dec; 36(12):5523-5529. PubMed ID: 9898840
    [No Abstract]   [Full Text] [Related]  

  • 2. Relativistic continuum normalizations and phase shifts in a screened Coulomb potential from a relativistic generalized WKB approximation.
    Goldberg IB; Stein J; Ron A; Pratt RH
    Phys Rev A Gen Phys; 1989 Jan; 39(2):506-513. PubMed ID: 9901277
    [No Abstract]   [Full Text] [Related]  

  • 3. Iterated WKB method of normalization and phase shifts of the nonrelativistic continuum wave function.
    Liu H; Xi J; Li B
    Phys Rev A; 1993 Jul; 48(1):228-232. PubMed ID: 9909591
    [No Abstract]   [Full Text] [Related]  

  • 4. Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers.
    Jankowska M; Kupka T; Stobiński L; Faber R; Lacerda EG; Sauer SP
    J Comput Chem; 2016 Feb; 37(4):395-403. PubMed ID: 26503739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Results from the nonrelativistic dipole-approximation theory of two-photon electron bremsstrahlung in the Coulomb field.
    Dondera M; Florescu V
    Phys Rev A; 1993 Dec; 48(6):4267-4271. PubMed ID: 9910128
    [No Abstract]   [Full Text] [Related]  

  • 6. Strong Field Theories beyond Dipole Approximations in Nonrelativistic Regimes.
    He PL; Lao D; He F
    Phys Rev Lett; 2017 Apr; 118(16):163203. PubMed ID: 28474956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relativistic explicit correlation: coalescence conditions and practical suggestions.
    Li Z; Shao S; Liu W
    J Chem Phys; 2012 Apr; 136(14):144117. PubMed ID: 22502511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical expressions for characteristics of light scattering by arbitrarily shaped particles in the WKB approximation.
    Malinka AV
    J Opt Soc Am A Opt Image Sci Vis; 2015 Jul; 32(7):1344-51. PubMed ID: 26367164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral formulation and WKB approximation for rare-event statistics in reaction systems.
    Assaf M; Meerson B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041115. PubMed ID: 17155030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron correlation within the relativistic no-pair approximation.
    Almoukhalalati A; Knecht S; Jensen HJ; Dyall KG; Saue T
    J Chem Phys; 2016 Aug; 145(7):074104. PubMed ID: 27544084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shielding constants and chemical shifts in DFT: influence of optimized effective potential and Coulomb-attenuation.
    Peach MJ; Kattirtzi JA; Teale AM; Tozer DJ
    J Phys Chem A; 2010 Jul; 114(26):7179-86. PubMed ID: 20527921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approximate methods for modeling the scattering properties of nonspherical particles: evaluation of the Wentzel-Kramers-Brillouin method.
    Klett JD; Sutherland RA
    Appl Opt; 1992 Jan; 31(3):373-86. PubMed ID: 20717415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-energy-modified Poisson-Nernst-Planck equations: WKB approximation and finite-difference approaches.
    Xu Z; Ma M; Liu P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013307. PubMed ID: 25122410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of nonrelativistic and quasi-relativistic hybrid DFT for the prediction of electric and magnetic hyperfine parameters in 57Fe Mössbauer spectra.
    Sinnecker S; Slep LD; Bill E; Neese F
    Inorg Chem; 2005 Apr; 44(7):2245-54. PubMed ID: 15792459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coulomb coupling between spatially separated electron and hole layers: Generalized random-phase approximation.
    Tso HC; Vasilopoulos P; Peeters FM
    Phys Rev Lett; 1993 Apr; 70(14):2146-2149. PubMed ID: 10053482
    [No Abstract]   [Full Text] [Related]  

  • 16. Density functional formulation of the random-phase approximation for inhomogeneous fluids: Application to the Gaussian core and Coulomb particles.
    Frydel D; Ma M
    Phys Rev E; 2016 Jun; 93(6):062112. PubMed ID: 27415213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of hard-cylinder and screened Coulomb interactions in the modeling of supercoiled DNAs.
    Delrow JJ; Gebe JA; Schurr JM
    Biopolymers; 1997 Oct; 42(4):455-70. PubMed ID: 9283294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multidimensional WKB approximation for particle tunneling.
    Zamastil J
    Phys Rev E; 2018 Jul; 98(1-1):012211. PubMed ID: 30110799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of WKB and finite difference calculations for a two-dimensional cochlear model.
    Steele CR; Taber LA
    J Acoust Soc Am; 1979 Apr; 65(4):1001-6. PubMed ID: 447913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron density fitting for the Coulomb problem in relativistic density-functional theory.
    Belpassi L; Tarantelli F; Sgamellotti A; Quiney HM
    J Chem Phys; 2006 Mar; 124(12):124104. PubMed ID: 16599659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.