These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 9900769)

  • 1. Slow electrons in condensed matter: The large polaron.
    Stephens JA; Fano U
    Phys Rev A Gen Phys; 1988 Oct; 38(7):3372-3376. PubMed ID: 9900769
    [No Abstract]   [Full Text] [Related]  

  • 2. Type-II Dirac semimetal stabilized by electron-phonon coupling.
    Möller MM; Sawatzky GA; Franz M; Berciu M
    Nat Commun; 2017 Dec; 8(1):2267. PubMed ID: 29273715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mobile polaron solutions and nonlinear electron transfer in helical protein models.
    Hennig D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041908. PubMed ID: 11690053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow electrons in condensed matter.
    Fano U; Stephens JA
    Phys Rev B Condens Matter; 1986 Jul; 34(1):438-441. PubMed ID: 9939280
    [No Abstract]   [Full Text] [Related]  

  • 5. Short- and long-range interactions of slow electrons in condensed matter: Effects on reflection and transmission.
    Fano U
    Phys Rev A Gen Phys; 1987 Aug; 36(4):1929-1931. PubMed ID: 9899075
    [No Abstract]   [Full Text] [Related]  

  • 6. Dynamical simulations of polaron transport in conjugated polymers with the inclusion of electron-electron interactions.
    Ma H; Schollwöck U
    J Phys Chem A; 2009 Feb; 113(7):1360-7. PubMed ID: 19143547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic Monte Carlo model of charge transport in hematite (alpha-Fe(2)O(3)).
    Kerisit S; Rosso KM
    J Chem Phys; 2007 Sep; 127(12):124706. PubMed ID: 17902930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Condensed-matter physics: Attractive electrons from nanoengineering.
    Kontos T
    Nature; 2016 Jul; 535(7612):362-3. PubMed ID: 27443737
    [No Abstract]   [Full Text] [Related]  

  • 9. Negative polaron and triplet exciton diffusion in organometallic "molecular wires".
    Keller JM; Glusac KD; Danilov EO; McIlroy S; Sreearuothai P; Cook AR; Jiang H; Miller JR; Schanze KS
    J Am Chem Soc; 2011 Jul; 133(29):11289-98. PubMed ID: 21644580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Condensed-matter physics: Superconducting electrons go missing.
    Zaanen J
    Nature; 2016 Aug; 536(7616):282-3. PubMed ID: 27535532
    [No Abstract]   [Full Text] [Related]  

  • 11. Properties of the moving Holstein large polaron in one-dimensional molecular crystals.
    Vosika Z; Pržulj Z; Hadžievski L; Ivić Z
    J Phys Condens Matter; 2009 Jul; 21(27):275404. PubMed ID: 21828488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Long-range electron transfer in globular proteins by polaron excitation].
    Lakhno VL; Chuev GN
    Biofizika; 1997; 42(2):313-9. PubMed ID: 9172674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal enhancement and stochastic resonance of polaron ratchets.
    Brizhik LS; Eremko AA; Piette BM; Zakrzewski WJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062905. PubMed ID: 25019849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental neutron scattering evidence for proton polaron in hydrated metal oxide proton conductors.
    Braun A; Chen Q
    Nat Commun; 2017 Jun; 8():15830. PubMed ID: 28613274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational modeling of self-trapped electrons in rutile TiO2.
    Yan L; Elenewski JE; Jiang W; Chen H
    Phys Chem Chem Phys; 2015 Nov; 17(44):29949-57. PubMed ID: 26490001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of second order perturbation theory in the polaron and variational polaron frames.
    Lee CK; Moix J; Cao J
    J Chem Phys; 2012 May; 136(20):204120. PubMed ID: 22667553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Criteria for the accuracy of small polaron quantum master equation in simulating excitation energy transfer dynamics.
    Chang HT; Zhang PP; Cheng YC
    J Chem Phys; 2013 Dec; 139(22):224112. PubMed ID: 24329061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nature of excess electrons in anatase and rutile from hybrid DFT and RPA.
    Spreafico C; VandeVondele J
    Phys Chem Chem Phys; 2014 Dec; 16(47):26144-52. PubMed ID: 25360624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Condensed-matter physics: Taking control of spin currents.
    Shen ZX; Sobota J
    Nature; 2017 Sep; 549(7673):464-465. PubMed ID: 28959972
    [No Abstract]   [Full Text] [Related]  

  • 20. Condensed-matter physics: Functional materials at the flick of a switch.
    Ramanathan S
    Nature; 2017 May; 546(7656):40-41. PubMed ID: 28569810
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.