These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 9901874)
1. Barkas effect in electronic stopping power: Rigorous evaluation for the harmonic oscillator. Mikkelsen HH; Sigmund P Phys Rev A Gen Phys; 1989 Jul; 40(1):101-116. PubMed ID: 9901874 [No Abstract] [Full Text] [Related]
2. Ab Initio Prediction of a Negative Barkas Coefficient for Slow Protons and Antiprotons in LiF. Qi X; Bruneval F; Maliyov I Phys Rev Lett; 2022 Jan; 128(4):043401. PubMed ID: 35148149 [TBL] [Abstract][Full Text] [Related]
4. Barkas effect for antiproton stopping in H2. Lodi Rizzini E; Bianconi A; Bussa MP; Corradini M; Donzella A; Venturelli L; Bargiotti M; Bertin A; Bruschi M; Capponi M; De Castro S; Fabbri L; Faccioli P; Galli D; Giacobbe B; Marconi U; Massa I; Piccinini M; Poli M; Semprini Cesari N; Spighi R; Vagnoni V; Vecchi S; Villa M; Vitale A; Zoccoli A; Gorchakov OE; Pontecorvo GB; Rozhdestvensky AM; Tretyak VI; Guaraldo C; Petrascu C; Balestra F; Busso L; Denisov OY; Ferrero L; Garfagnini R; Grasso A; Maggiora A; Piragino G; Tosello F; Zosi G; Margagliotti G; Santi L; Tessaro S Phys Rev Lett; 2002 Oct; 89(18):183201. PubMed ID: 12398596 [TBL] [Abstract][Full Text] [Related]
5. Measurement of the Z13 contribution to the stopping power using MeV protons and antiprotons: The Barkas effect. Andersen LH; Hvelplund P; Knudsen H; Möller SP; Pedersen JO; Uggerhöj E; Elsener K; Morenzoni E Phys Rev Lett; 1989 Apr; 62(15):1731-1734. PubMed ID: 10039753 [No Abstract] [Full Text] [Related]
6. Resolution of the frozen-charge paradox in stopping of channeled heavy ions. Sigmund P; Schinner A Phys Rev Lett; 2001 Feb; 86(8):1486-9. PubMed ID: 11290174 [TBL] [Abstract][Full Text] [Related]
7. Barkas effect and effective charge in the theory of stopping power. Bichsel H Phys Rev A; 1990 Apr; 41(7):3642-3647. PubMed ID: 9903535 [No Abstract] [Full Text] [Related]
8. Antiproton stopping power in hydrogen below 120 keV and the Barkas effect. Adamo A; Agnello M; Balestra F; Belli G; Bendiscioli G; Bertin A; Boccaccio P; Bonazzola GC; Bressani T; Bruschi M; Bussa MP; Busso L; Calvo D; Capponi M; Cicalò C; Corradini M; Costa S; D'Antone I; De Castro S ; D'Isep F; Donzella A; Falomkin IV; Fava L; Feliciello A; Ferrero L; Filippini V; Galli D; Garfagnini R; Gastaldi U; Gianotti P; Grasso A; Guaraldo C; Iazzi F; Lanaro A; Lodi Rizzini E ; Lombardi M; Lucherini V; Maggiora A; Marcello S; Marconi U; Maron G; Masoni A; Massa I; Minetti B; Morando M; Montagna P; Nichitiu F; Panzieri D; Pauli G; Piccinini M; Piragino G; Poli M; Pontecorvo GB; Puddu G; Ricci RA; Rossetto E; Rotondi A; Rozhdestvensky AM; Salvini P; Santi L; Sapozhnikov MG; Semprini Cesari N ; Serci S; Temnikov P Phys Rev A; 1993 May; 47(5):4517-4520. PubMed ID: 9909464 [No Abstract] [Full Text] [Related]
9. A dielectric response study of the electronic stopping power of liquid water for energetic protons and a new I-value for water. Emfietzoglou D; Garcia-Molina R; Kyriakou I; Abril I; Nikjoo H Phys Med Biol; 2009 Jun; 54(11):3451-72. PubMed ID: 19436107 [TBL] [Abstract][Full Text] [Related]
10. Giant Barkas effect observed for light ions channeling in Si. Azevedo GM; Grande PL; Behar M; Dias JF; Schiwietz G Phys Rev Lett; 2001 Feb; 86(8):1482-5. PubMed ID: 11290173 [TBL] [Abstract][Full Text] [Related]
11. Bethe stopping theory for a harmonic oscillator and Bohr's oscillator model of atomic stopping. Sigmund P; Haagerup U Phys Rev A Gen Phys; 1986 Aug; 34(2):892-910. PubMed ID: 9897347 [No Abstract] [Full Text] [Related]
12. Erratum: Bethe stopping theory for a harmonic oscillator and Bohr's oscillator model of atomic stopping. Sigmund P; Haagerup U Phys Rev A Gen Phys; 1987 May; 35(9):3965. PubMed ID: 9898630 [No Abstract] [Full Text] [Related]
13. High-average-power intracavity second-harmonic generation using KTiOPO(4) in an acousto-optically Q-switched Nd:YAG laser oscillator at 5 kHz. Liu YS; Dentz D; Belt R Opt Lett; 1984 Mar; 9(3):76-8. PubMed ID: 19721501 [TBL] [Abstract][Full Text] [Related]
14. Coupling of the relaxation and resonant elements in the autonomous chaotic relaxation oscillator (ACRO). Bernhardt PA Chaos; 1992 Apr; 2(2):183-199. PubMed ID: 12779965 [TBL] [Abstract][Full Text] [Related]
15. Geometric phase and nonadiabatic effects in an electronic harmonic oscillator. Pechal M; Berger S; Abdumalikov AA; Fink JM; Mlynek JA; Steffen L; Wallraff A; Filipp S Phys Rev Lett; 2012 Apr; 108(17):170401. PubMed ID: 22680840 [TBL] [Abstract][Full Text] [Related]
16. Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise. Viñales AD; Wang KG; Despósito MA Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011101. PubMed ID: 19658647 [TBL] [Abstract][Full Text] [Related]
17. Power fluctuation theorem for a Brownian harmonic oscillator. Jiménez-Aquino JI; Velasco RM Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022112. PubMed ID: 23496465 [TBL] [Abstract][Full Text] [Related]
18. Exact stopping cross section of the quantum harmonic oscillator for a penetrating point charge of arbitrary strength. Mikkelsen HH; Flyvbjerg H Phys Rev A; 1992 Mar; 45(5):3025-3031. PubMed ID: 9907337 [No Abstract] [Full Text] [Related]
19. Exact master equation and quantum decoherence of two coupled harmonic oscillators in a general environment. Chou CH; Yu T; Hu BL Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011112. PubMed ID: 18351823 [TBL] [Abstract][Full Text] [Related]
20. Fractional oscillator. Stanislavsky AA Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 1):051103. PubMed ID: 15600586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]