These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 9902965)
1. Scaling relations for thermodynamic functions of circle maps. Wang X; Lowenstein JH Phys Rev A; 1990 May; 41(10):5721-5724. PubMed ID: 9902965 [No Abstract] [Full Text] [Related]
2. Local scaling of the flux for standardlike maps. Buric N; Todorovic K Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046221. PubMed ID: 12443313 [TBL] [Abstract][Full Text] [Related]
3. Effect of shock waves on the statistics and scaling in compressible isotropic turbulence. Wang J; Wan M; Chen S; Xie C; Chen S Phys Rev E; 2018 Apr; 97(4-1):043108. PubMed ID: 29758607 [TBL] [Abstract][Full Text] [Related]
4. Critical phenomena on scale-free networks: logarithmic corrections and scaling functions. Palchykov V; von Ferber C; Folk R; Holovatch Y; Kenna R Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011145. PubMed ID: 20866603 [TBL] [Abstract][Full Text] [Related]
5. Scaling for small random perturbations of golden critical circle maps. Hamm A; Graham R Phys Rev A; 1992 Nov; 46(10):6323-6333. PubMed ID: 9907944 [No Abstract] [Full Text] [Related]
6. Thermodynamic scaling of dynamic properties of liquid crystals: verifying the scaling parameters using a molecular model. Satoh K J Chem Phys; 2013 Aug; 139(8):084901. PubMed ID: 24007031 [TBL] [Abstract][Full Text] [Related]
7. Dynamical behavior of hydrodynamic Lyapunov modes in coupled map lattices. Yang HL; Radons G Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016208. PubMed ID: 16486259 [TBL] [Abstract][Full Text] [Related]
8. Power-law persistence characterizes traveling waves in coupled circle maps with repulsive coupling. Gade PM; Senthilkumar DV; Barve S; Sinha S Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066208. PubMed ID: 17677341 [TBL] [Abstract][Full Text] [Related]
9. Partition function zeros and finite size scaling for polymer adsorption. Taylor MP; Luettmer-Strathmann J J Chem Phys; 2014 Nov; 141(20):204906. PubMed ID: 25429961 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamic scaling of the shear viscosity of Mie n-6 fluids and their binary mixtures. Delage-Santacreu S; Galliero G; Hoang H; Bazile JP; Boned C; Fernandez J J Chem Phys; 2015 May; 142(17):174501. PubMed ID: 25956107 [TBL] [Abstract][Full Text] [Related]
11. Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers. Calle-Vallejo F; Loffreda D; Koper MT; Sautet P Nat Chem; 2015 May; 7(5):403-10. PubMed ID: 25901818 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamic scaling of polymer dynamics versus T-T(g) scaling. Guo J; Simon SL J Chem Phys; 2011 Aug; 135(7):074901. PubMed ID: 21861582 [TBL] [Abstract][Full Text] [Related]
13. Thermodynamic scaling of dynamics in polymer melts: predictions from the generalized entropy theory. Xu WS; Freed KF J Chem Phys; 2013 Jun; 138(23):234501. PubMed ID: 23802965 [TBL] [Abstract][Full Text] [Related]
14. One- and two-dimensional quantum models: Quenches and the scaling of irreversible entropy. Sharma S; Dutta A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022108. PubMed ID: 26382345 [TBL] [Abstract][Full Text] [Related]
15. Consistency between kinetics and thermodynamics: general scaling conditions for reaction rates of nonlinear chemical systems without constraints far from equilibrium. Vlad MO; Popa VT; Ross J J Phys Chem A; 2011 Feb; 115(4):507-13. PubMed ID: 21182240 [TBL] [Abstract][Full Text] [Related]
17. Amplitude scaling in a bimanual circle-drawing task: pattern switching and end-effector variability. Ryu YU; Buchanan J J Mot Behav; 2004 Sep; 36(3):265-79. PubMed ID: 15262623 [TBL] [Abstract][Full Text] [Related]
18. Validity of scaling relations in absorbing phase transitions with a conserved field. Lee SB; Lee SG Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):040103. PubMed ID: 18999366 [TBL] [Abstract][Full Text] [Related]
19. Relationship between thermodynamic parameter and thermodynamic scaling parameter for orientational relaxation time for flip-flop motion of nematic liquid crystals. Satoh K J Chem Phys; 2013 Mar; 138(9):094903. PubMed ID: 23485322 [TBL] [Abstract][Full Text] [Related]
20. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals. Pinski P; Riplinger C; Valeev EF; Neese F J Chem Phys; 2015 Jul; 143(3):034108. PubMed ID: 26203015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]