These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 9903063)

  • 1. Second Born approximation for relativistic electron capture: Exact Monte Carlo calculations for C6+-Au and Ar18+-Ag collisions.
    Decker F
    Phys Rev A; 1990 Jun; 41(11):6552-6554. PubMed ID: 9903063
    [No Abstract]   [Full Text] [Related]  

  • 2. Electron-nucleus cusp correction scheme for the relativistic zeroth-order regular approximation quantum Monte Carlo method.
    Nakatsuka Y; Nakajima T; Hirao K
    J Chem Phys; 2010 May; 132(17):174108. PubMed ID: 20459157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relativistic quantum Monte Carlo method using zeroth-order regular approximation Hamiltonian.
    Nakatsuka Y; Nakajima T; Nakata M; Hirao K
    J Chem Phys; 2010 Feb; 132(5):054102. PubMed ID: 20136300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Second-order Born calculations for electron capture in relativistic U+U collisions.
    Decker F; Eichler J
    Phys Rev A; 1991 Aug; 44(3):2195-2197. PubMed ID: 9906189
    [No Abstract]   [Full Text] [Related]  

  • 5. A quantum Monte Carlo study on electron correlation in all-metal aromatic clusters MAl4(-) (M = Li, Na, K, Rb, Cu, Ag and Au).
    Brito BG; Hai GQ; Teixeira Rabelo JN; Cândido L
    Phys Chem Chem Phys; 2014 May; 16(18):8639-45. PubMed ID: 24676470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exact relativistic second Born approximation for electron capture.
    Jakubassa-Amundsen DH; Amundsen PA
    Phys Rev A Gen Phys; 1985 Nov; 32(5):3106-3108. PubMed ID: 9896458
    [No Abstract]   [Full Text] [Related]  

  • 7. A Monte Carlo study of absorbed dose distributions in both the vapor and liquid phases of water by intermediate energy electrons based on different condensed-history transport schemes.
    Bousis C; Emfietzoglou D; Hadjidoukas P; Nikjoo H
    Phys Med Biol; 2008 Jul; 53(14):3739-61. PubMed ID: 18574312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Relativistic Effects on Assembled Structures of V-Shaped Bispyridine Molecules on M(111) Surfaces Where M = Cu, Ag, Au.
    Zhang X; Li N; Wang H; Yuan C; Gu G; Zhang Y; Nieckarz D; Szabelski P; Hou S; Teo BK; Wang Y
    ACS Nano; 2017 Aug; 11(8):8511-8518. PubMed ID: 28726372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relativistic diffusion Monte Carlo method: zeroth-order regular approximation-diffusion Monte Carlo method in a spin-free formalism.
    Nakatsuka Y; Nakajima T
    J Chem Phys; 2012 Oct; 137(15):154103. PubMed ID: 23083144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exact second-order Born calculations for relativistic electron capture.
    Decker F; Eichler J
    Phys Rev A; 1991 Jul; 44(1):377-387. PubMed ID: 9905691
    [No Abstract]   [Full Text] [Related]  

  • 11. Calculations of nuclear quadrupole coupling in noble gas-noble metal fluorides: interplay of relativistic and electron correlation effects.
    Lantto P; Vaara J
    J Chem Phys; 2006 Nov; 125(17):174315. PubMed ID: 17100447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feynman-Monte Carlo calculations of electron capture at relativistic collider energies.
    Rhoades-Brown MJ; Bottcher C; Strayer MR
    Phys Rev A Gen Phys; 1989 Sep; 40(5):2831-2834. PubMed ID: 9902488
    [No Abstract]   [Full Text] [Related]  

  • 13. Comment on "Feynman-Monte Carlo calculations of electron capture at relativistic collider energies".
    Baur G
    Phys Rev A; 1991 Oct; 44(7):4767-4768. PubMed ID: 9906529
    [No Abstract]   [Full Text] [Related]  

  • 14. Revisiting the geometry of nd10 (n+1)s0 [M(H2O)]p+ complexes using four-component relativistic DFT calculations and scalar relativistic correlated CSOV energy decompositions (M(p+) = Cu+, Zn2+, Ag+, Cd2+, Au+, Hg2+).
    Gourlaouen C; Piquemal JP; Saue T; Parisel O
    J Comput Chem; 2006 Jan; 27(2):142-56. PubMed ID: 16312018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalar relativistic all-electron density functional calculations on periodic systems.
    Peralta JE; Uddin J; Scuseria GE
    J Chem Phys; 2005 Feb; 122(8):84108. PubMed ID: 15836021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relativistic Effects on Donor-Acceptor Interactions in Coinage Metal Carbonyl Complexes [TM(CO)
    Poggel C; Frenking G
    Chemistry; 2018 Aug; 24(45):11675-11682. PubMed ID: 29718560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploiting intrinsic triangular geometry in relativistic (3)He+Au collisions to disentangle medium properties.
    Nagle JL; Adare A; Beckman S; Koblesky T; Koop JO; McGlinchey D; Romatschke P; Carlson J; Lynn JE; McCumber M
    Phys Rev Lett; 2014 Sep; 113(11):112301. PubMed ID: 25259971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular relativistic corrections determined in the framework where the Born-Oppenheimer approximation is not assumed.
    Stanke M; Adamowicz L
    J Phys Chem A; 2013 Oct; 117(39):10129-37. PubMed ID: 23679131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionization and electron capture in ion-molecule collisions: classical (CTMC) and semiclassical calculations.
    Errea LF; Illescas C; Méndez L; Rabadán I
    Appl Radiat Isot; 2014 Jan; 83 Pt B():86-90. PubMed ID: 23415105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Density Functional Study of Metal-Ligand Bonding in [(PR(3))(2)M](+) and [PR(3)MCl] (M = Ag, Au; R = H, Me) Complexes.
    Bowmaker GA; Schmidbaur H; Krüger S; Rösch N
    Inorg Chem; 1997 Apr; 36(9):1754-1757. PubMed ID: 11669776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.