These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 9903535)
1. Barkas effect and effective charge in the theory of stopping power. Bichsel H Phys Rev A; 1990 Apr; 41(7):3642-3647. PubMed ID: 9903535 [No Abstract] [Full Text] [Related]
2. Resolution of the frozen-charge paradox in stopping of channeled heavy ions. Sigmund P; Schinner A Phys Rev Lett; 2001 Feb; 86(8):1486-9. PubMed ID: 11290174 [TBL] [Abstract][Full Text] [Related]
3. Ab Initio Prediction of a Negative Barkas Coefficient for Slow Protons and Antiprotons in LiF. Qi X; Bruneval F; Maliyov I Phys Rev Lett; 2022 Jan; 128(4):043401. PubMed ID: 35148149 [TBL] [Abstract][Full Text] [Related]
5. Barkas effect for antiproton stopping in H2. Lodi Rizzini E; Bianconi A; Bussa MP; Corradini M; Donzella A; Venturelli L; Bargiotti M; Bertin A; Bruschi M; Capponi M; De Castro S; Fabbri L; Faccioli P; Galli D; Giacobbe B; Marconi U; Massa I; Piccinini M; Poli M; Semprini Cesari N; Spighi R; Vagnoni V; Vecchi S; Villa M; Vitale A; Zoccoli A; Gorchakov OE; Pontecorvo GB; Rozhdestvensky AM; Tretyak VI; Guaraldo C; Petrascu C; Balestra F; Busso L; Denisov OY; Ferrero L; Garfagnini R; Grasso A; Maggiora A; Piragino G; Tosello F; Zosi G; Margagliotti G; Santi L; Tessaro S Phys Rev Lett; 2002 Oct; 89(18):183201. PubMed ID: 12398596 [TBL] [Abstract][Full Text] [Related]
6. Measurement of the Z13 contribution to the stopping power using MeV protons and antiprotons: The Barkas effect. Andersen LH; Hvelplund P; Knudsen H; Möller SP; Pedersen JO; Uggerhöj E; Elsener K; Morenzoni E Phys Rev Lett; 1989 Apr; 62(15):1731-1734. PubMed ID: 10039753 [No Abstract] [Full Text] [Related]
7. Antiproton stopping power in hydrogen below 120 keV and the Barkas effect. Adamo A; Agnello M; Balestra F; Belli G; Bendiscioli G; Bertin A; Boccaccio P; Bonazzola GC; Bressani T; Bruschi M; Bussa MP; Busso L; Calvo D; Capponi M; Cicalò C; Corradini M; Costa S; D'Antone I; De Castro S ; D'Isep F; Donzella A; Falomkin IV; Fava L; Feliciello A; Ferrero L; Filippini V; Galli D; Garfagnini R; Gastaldi U; Gianotti P; Grasso A; Guaraldo C; Iazzi F; Lanaro A; Lodi Rizzini E ; Lombardi M; Lucherini V; Maggiora A; Marcello S; Marconi U; Maron G; Masoni A; Massa I; Minetti B; Morando M; Montagna P; Nichitiu F; Panzieri D; Pauli G; Piccinini M; Piragino G; Poli M; Pontecorvo GB; Puddu G; Ricci RA; Rossetto E; Rotondi A; Rozhdestvensky AM; Salvini P; Santi L; Sapozhnikov MG; Semprini Cesari N ; Serci S; Temnikov P Phys Rev A; 1993 May; 47(5):4517-4520. PubMed ID: 9909464 [No Abstract] [Full Text] [Related]
8. Barkas effect in electronic stopping power: Rigorous evaluation for the harmonic oscillator. Mikkelsen HH; Sigmund P Phys Rev A Gen Phys; 1989 Jul; 40(1):101-116. PubMed ID: 9901874 [No Abstract] [Full Text] [Related]
9. A dielectric response study of the electronic stopping power of liquid water for energetic protons and a new I-value for water. Emfietzoglou D; Garcia-Molina R; Kyriakou I; Abril I; Nikjoo H Phys Med Biol; 2009 Jun; 54(11):3451-72. PubMed ID: 19436107 [TBL] [Abstract][Full Text] [Related]
10. Giant Barkas effect observed for light ions channeling in Si. Azevedo GM; Grande PL; Behar M; Dias JF; Schiwietz G Phys Rev Lett; 2001 Feb; 86(8):1482-5. PubMed ID: 11290173 [TBL] [Abstract][Full Text] [Related]
11. Electronic stopping power for slow ions in the low-hardness semimetal HgTe using first-principles calculations. Fu YL; Zhang ZJ; Li CK; Sang HB; Cheng W; Zhang FS J Phys Condens Matter; 2020 Mar; 32(10):105701. PubMed ID: 31747646 [TBL] [Abstract][Full Text] [Related]
12. The calculation of stopping power and range for radium, thorium and uranium using new electronic potential energy function. Usta M Appl Radiat Isot; 2019 Oct; 152():193-199. PubMed ID: 31382112 [TBL] [Abstract][Full Text] [Related]
14. Ab Initio Studies on the Stopping Power of Warm Dense Matter with Time-Dependent Orbital-Free Density Functional Theory. Ding YH; White AJ; Hu SX; Certik O; Collins LA Phys Rev Lett; 2018 Oct; 121(14):145001. PubMed ID: 30339443 [TBL] [Abstract][Full Text] [Related]
15. Quantum-classical simulations of the electronic stopping force and charge on slow heavy channelling ions in metals. Race CP; Mason DR; Foo MH; Foulkes WM; Horsfield AP; Sutton AP J Phys Condens Matter; 2013 Mar; 25(12):125501. PubMed ID: 23420350 [TBL] [Abstract][Full Text] [Related]
16. Cross-section scaling for track structure simulations of low-energy ions in liquid water. Schmitt E; Friedland W; Kundrát P; Dingfelder M; Ottolenghi A Radiat Prot Dosimetry; 2015 Sep; 166(1-4):15-8. PubMed ID: 25969528 [TBL] [Abstract][Full Text] [Related]
18. Modified Bethe formula for low-energy electron stopping power without fitting parameters. Nguyen-Truong HT Ultramicroscopy; 2015 Feb; 149():26-33. PubMed ID: 25436926 [TBL] [Abstract][Full Text] [Related]
19. Electronic stopping power of liquid water for protons down to the Bragg peak. Emfietzoglou D; Pathak A; Nikjoo H Radiat Prot Dosimetry; 2007; 126(1-4):97-100. PubMed ID: 17504748 [TBL] [Abstract][Full Text] [Related]
20. Hydrodynamic theory for ion structure and stopping power in quantum plasmas. Shukla PK; Akbari-Moghanjoughi M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043106. PubMed ID: 23679529 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]