These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 9903848)

  • 1. Relativistic second-order Born theory for electron capture.
    Jakubassa-Amundsen DH
    Phys Rev A; 1990 Jul; 42(1):653-654. PubMed ID: 9903848
    [No Abstract]   [Full Text] [Related]  

  • 2. Second-order Born calculations for electron capture in relativistic U+U collisions.
    Decker F; Eichler J
    Phys Rev A; 1991 Aug; 44(3):2195-2197. PubMed ID: 9906189
    [No Abstract]   [Full Text] [Related]  

  • 3. Exact second-order Born calculations for relativistic electron capture.
    Decker F; Eichler J
    Phys Rev A; 1991 Jul; 44(1):377-387. PubMed ID: 9905691
    [No Abstract]   [Full Text] [Related]  

  • 4. Relativistic and electron-correlation effects on magnetizabilities investigated by the Douglas-Kroll-Hess method and the second-order Møller-Plesset perturbation theory.
    Yoshizawa T; Hada M
    J Comput Chem; 2009 Nov; 30(15):2550-66. PubMed ID: 19373837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic shielding constants calculated by the infinite-order Douglas-Kroll-Hess method with electron-electron relativistic corrections.
    Seino J; Hada M
    J Chem Phys; 2010 May; 132(17):174105. PubMed ID: 20459154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exact relativistic second Born approximation for electron capture.
    Jakubassa-Amundsen DH; Amundsen PA
    Phys Rev A Gen Phys; 1985 Nov; 32(5):3106-3108. PubMed ID: 9896458
    [No Abstract]   [Full Text] [Related]  

  • 7. Molecular relativistic corrections determined in the framework where the Born-Oppenheimer approximation is not assumed.
    Stanke M; Adamowicz L
    J Phys Chem A; 2013 Oct; 117(39):10129-37. PubMed ID: 23679131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Second Born approximation for relativistic electron capture: Exact Monte Carlo calculations for C6+-Au and Ar18+-Ag collisions.
    Decker F
    Phys Rev A; 1990 Jun; 41(11):6552-6554. PubMed ID: 9903063
    [No Abstract]   [Full Text] [Related]  

  • 9. Perturbative treatment of scalar-relativistic effects in coupled-cluster calculations of equilibrium geometries and harmonic vibrational frequencies using analytic second-derivative techniques.
    Michauk C; Gauss J
    J Chem Phys; 2007 Jul; 127(4):044106. PubMed ID: 17672680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive relativistic ab initio and density functional theory studies on PtH, PtF, PtCl, and Pt(NH(3))(2)Cl(2).
    Liu W; Franke R
    J Comput Chem; 2002 Apr; 23(5):564-75. PubMed ID: 11948583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculations of nuclear quadrupole coupling in noble gas-noble metal fluorides: interplay of relativistic and electron correlation effects.
    Lantto P; Vaara J
    J Chem Phys; 2006 Nov; 125(17):174315. PubMed ID: 17100447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross sections of relativistic radiative electron capture by use of the strong-potential Born calculation.
    Hino Ki; Watanabe T
    Phys Rev A Gen Phys; 1987 Jul; 36(2):581-590. PubMed ID: 9898899
    [No Abstract]   [Full Text] [Related]  

  • 13. Breit interaction effects in relativistic theory of the nuclear spin-rotation tensor.
    Aucar IA; Gómez SS; Giribet CG; Ruiz de Azúa MC
    J Chem Phys; 2013 Sep; 139(9):094112. PubMed ID: 24028107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relativistic (SR-ZORA) quantum theory of atoms in molecules properties.
    Anderson JS; Rodríguez JI; Ayers PW; Götz AW
    J Comput Chem; 2017 Jan; 38(2):81-86. PubMed ID: 27862042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degenerate Perturbation Theory for Electronic g Tensors: Leading-Order Relativistic Effects.
    Rinkevicius Z; de Almeida KJ; Oprea CI; Vahtras O; Ågren H; Ruud K
    J Chem Theory Comput; 2008 Nov; 4(11):1810-28. PubMed ID: 26620325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relativistic second-order Oppenheimer-Brinkman-Kramers cross sections for electron capture.
    Moiseiwitsch BL
    Phys Rev A Gen Phys; 1989 Jun; 39(11):5609-5612. PubMed ID: 9901142
    [No Abstract]   [Full Text] [Related]  

  • 17. Molecular QTAIM Topology Is Sensitive to Relativistic Corrections.
    Anderson JSM; Rodríguez JI; Ayers PW; Trujillo-González DE; Götz AW; Autschbach J; Castillo-Alvarado FL; Yamashita K
    Chemistry; 2019 Feb; 25(10):2538-2544. PubMed ID: 30393899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer.
    Hanni M; Lantto P; Ilias M; Jensen HJ; Vaara J
    J Chem Phys; 2007 Oct; 127(16):164313. PubMed ID: 17979344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relativistic corrections to electrical first-order properties using direct perturbation theory.
    Stopkowicz S; Gauss J
    J Chem Phys; 2008 Oct; 129(16):164119. PubMed ID: 19045259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-order electron-correlation methods with scalar relativistic and spin-orbit corrections.
    Hirata S; Yanai T; Harrison RJ; Kamiya M; Fan PD
    J Chem Phys; 2007 Jan; 126(2):024104. PubMed ID: 17228940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.