These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
68 related articles for article (PubMed ID: 990578)
1. [Coding of the acoustic information in the superior auditory centers]. De Ribaupierre F Bull Schweiz Akad Med Wiss; 1976 Jul; 32(1-3):29-39. PubMed ID: 990578 [TBL] [Abstract][Full Text] [Related]
2. Information content of auditory cortical responses to time-varying acoustic stimuli. Lu T; Wang X J Neurophysiol; 2004 Jan; 91(1):301-13. PubMed ID: 14523081 [TBL] [Abstract][Full Text] [Related]
3. Reprint of "frequency tuning and firing pattern properties of auditory thalamic neurons: an in vivo intracellular recording from the guinea pig" [Neuroscience 151 (2008) 293-302]. Zhang Z; Yu YQ; Liu CH; Chan YS; He J Neuroscience; 2008 Jun; 154(1):273-82. PubMed ID: 18555163 [TBL] [Abstract][Full Text] [Related]
4. Differential representation of spectral and temporal information by primary auditory cortex neurons in awake cats: relevance to auditory scene analysis. Sakai M; Chimoto S; Qin L; Sato Y Brain Res; 2009 Apr; 1265():80-92. PubMed ID: 19368805 [TBL] [Abstract][Full Text] [Related]
5. "Ventral" area in the rat auditory cortex: a major auditory field connected with the dorsal division of the medial geniculate body. Donishi T; Kimura A; Okamoto K; Tamai Y Neuroscience; 2006 Sep; 141(3):1553-67. PubMed ID: 16750887 [TBL] [Abstract][Full Text] [Related]
12. Frequency tuning and firing pattern properties of auditory thalamic neurons: an in vivo intracellular recording from the guinea pig. Zhang Z; Yu YQ; Liu CH; Chan YS; He J Neuroscience; 2008 Jan; 151(1):293-302. PubMed ID: 18082967 [TBL] [Abstract][Full Text] [Related]
13. Differential temporal coding of rhythmically diverse acoustic signals by a single interneuron. Marsat G; Pollack GS J Neurophysiol; 2004 Aug; 92(2):939-48. PubMed ID: 15044517 [TBL] [Abstract][Full Text] [Related]
14. Redefining the tonotopic core of rat auditory cortex: physiological evidence for a posterior field. Doron NN; Ledoux JE; Semple MN J Comp Neurol; 2002 Nov; 453(4):345-60. PubMed ID: 12389207 [TBL] [Abstract][Full Text] [Related]
15. Functional organization of the ventral division of the medial geniculate body of the cat: evidence for a rostro-caudal gradient of response properties and cortical projections. Rodrigues-Dagaeff C; Simm G; De Ribaupierre Y; Villa A; De Ribaupierre F; Rouiller EM Hear Res; 1989 May; 39(1-2):103-25. PubMed ID: 2737959 [TBL] [Abstract][Full Text] [Related]
16. Enhanced sound perception by widespread-onset neuronal responses in auditory cortex. Hoshino O Neural Comput; 2007 Dec; 19(12):3310-34. PubMed ID: 17970655 [TBL] [Abstract][Full Text] [Related]
17. [Role of the geniculate body in performing conditioned reflexes to amplitude-modulated stimuli in the rat]. Grigor'eva TI; Figurina II; Vasil'ev AG Zh Vyssh Nerv Deiat Im I P Pavlova; 1987; 37(2):265-71. PubMed ID: 3590970 [TBL] [Abstract][Full Text] [Related]
18. Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. Talavage TM; Sereno MI; Melcher JR; Ledden PJ; Rosen BR; Dale AM J Neurophysiol; 2004 Mar; 91(3):1282-96. PubMed ID: 14614108 [TBL] [Abstract][Full Text] [Related]
19. Tuning to sound frequency in auditory field potentials. Kayser C; Petkov CI; Logothetis NK J Neurophysiol; 2007 Sep; 98(3):1806-9. PubMed ID: 17596418 [TBL] [Abstract][Full Text] [Related]