These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 9906132)
21. Double- and single-electron capture and loss in collisions of 1-2-MeV/u boron, oxygen, and silicon projectiles with helium atoms. Hippler R; Datz S; Miller PD; Pepmiller PL; Dittner PF Phys Rev A Gen Phys; 1987 Jan; 35(2):585-590. PubMed ID: 9898178 [No Abstract] [Full Text] [Related]
22. The relative biological effectiveness for carbon, nitrogen, and oxygen ion beams using passive and scanning techniques evaluated with fully 3D silicon microdosimeters. Tran LT; Bolst D; Guatelli S; Pogossov A; Petasecca M; Lerch MLF; Chartier L; Prokopovich DA; Reinhard MI; Povoli M; Kok A; Perevertaylo VL; Matsufuji N; Kanai T; Jackson M; Rosenfeld AB Med Phys; 2018 May; 45(5):2299-2308. PubMed ID: 29572856 [TBL] [Abstract][Full Text] [Related]
23. The reduction of water clusters H+(H2O)n to (OH-)(H2O)m by double electron transfer from Cs atoms. Panja S; Hvelplund P; Nielsen SB; Uggerud E Phys Chem Chem Phys; 2009 Aug; 11(29):6125-31. PubMed ID: 19606322 [TBL] [Abstract][Full Text] [Related]
24. Intermediate-velocity atomic collisions: Electron capture and loss in 10-42-MeV C ions. Anholt R; Xu X; Stoller C; Molitoris JD; Meyerhof WE; Rude BS; McDonald RJ Phys Rev A Gen Phys; 1988 Feb; 37(4):1105-1114. PubMed ID: 9899771 [No Abstract] [Full Text] [Related]
25. Low-energy collisions of O5+ ions with He atoms: Single-electron capture, projectile excitation, and transfer excitation and ionization. Shimakura N; Yamada S; Suzuki S; Kimura M Phys Rev A; 1995 Apr; 51(4):2989-2996. PubMed ID: 9911933 [No Abstract] [Full Text] [Related]
26. Molecular treatment of electron capture in collisions of N4+ ions with H atoms. Shimakura N; Itoh M; Kimura M Phys Rev A; 1992 Jan; 45(1):267-275. PubMed ID: 9906723 [No Abstract] [Full Text] [Related]
27. On the hydrogen loss from protonated nucleobases after electronic excitation or collisional electron capture. Wyer JA; Cederquist H; Haag N; Huber BA; Hvelplund P; Johansson HA; Maisonny R; Brøndsted Nielsen S; Rangama J; Rousseau P; Schmidt HT Eur J Mass Spectrom (Chichester); 2009; 15(6):681-8. PubMed ID: 19940334 [TBL] [Abstract][Full Text] [Related]
28. Intermediate-velocity atomic collisions. III. Electron capture in 8.6- MeV/amu Ca ions. Montenegro EC; Xu XY; Meyerhof WE; Anholt R; Danzmann K; Schlachter AS; Rude BS; McDonald RJ Phys Rev A Gen Phys; 1988 Aug; 38(4):1854-1859. PubMed ID: 9900586 [No Abstract] [Full Text] [Related]
29. Multiple ionization in fast ion-atom collisions: simultaneous measurement of recoil momentum and projectile energy loss. Abdallah MA; Vane CR; Havener CC; Schultz DR; Krause HF; Jones N; Datz S Phys Rev Lett; 2000 Jul; 85(2):278-81. PubMed ID: 10991262 [TBL] [Abstract][Full Text] [Related]
30. Molecular treatment of electron capture at low to intermediate collision energies: Collisions of B4+ ions with H atoms. Shimakura N; Suzuki S; Kimura M Phys Rev A; 1993 May; 47(5):3930-3936. PubMed ID: 9909399 [No Abstract] [Full Text] [Related]
31. Hot Plasma and Energetic Particles in Neptune's Magnetosphere. Krimigis SM; Armstrong TP; Axford WI; Bostrom CO; Cheng AF; Gloeckler G; Hamilton DC; Keath EP; Lanzerotti LJ; Mauk BH; Van Allen JA Science; 1989 Dec; 246(4936):1483-9. PubMed ID: 17756004 [TBL] [Abstract][Full Text] [Related]
32. Biological characterization of low-energy ions with high-energy deposition on human cells. Saha J; Wilson P; Thieberger P; Lowenstein D; Wang M; Cucinotta FA Radiat Res; 2014 Sep; 182(3):282-91. PubMed ID: 25098728 [TBL] [Abstract][Full Text] [Related]
33. Charge distribution of Ar recoil ions produced in one- and two-electron capture collisions by 16-MeV Oq+ projectiles. Heber O; Sampoll G; Bandong BB; Watson RL Phys Rev A Gen Phys; 1989 Nov; 40(10):5601-5604. PubMed ID: 9901942 [No Abstract] [Full Text] [Related]
34. Resonant Electron Transfer in Collisions between Two Fullerene Ions. Bräuning H; Trassl R; Diehl A; Theiss A; Salzborn E; Narits AA; Presnyakov LP Phys Rev Lett; 2003 Oct; 91(16):168301. PubMed ID: 14611444 [TBL] [Abstract][Full Text] [Related]
35. Gas phase fragmentation of protonated betaine and its clusters. Wyer JA; Feketeová L; Brøndsted Nielsen S; O'Hair RA Phys Chem Chem Phys; 2009 Oct; 11(39):8752-8. PubMed ID: 20449019 [TBL] [Abstract][Full Text] [Related]
36. Ionization and Single and Double Electron Capture in Proton-Ar Collisions. Jorge A; Illescas C; Méndez L; Rabadán I J Phys Chem A; 2018 Mar; 122(9):2523-2534. PubMed ID: 29425451 [TBL] [Abstract][Full Text] [Related]
37. Strong evidence for enhanced multiple electron capture from surfaces in 46 MeV/u Pb81+ collisions with thin carbon foils. Bräuning H; Mokler PH; Liesen D; Bosch F; Franzke B; Krämer A; Kozhuharov C; Ludziejewski T; Ma X; Nolden F; Steck M; Stöhlker T; Dunford RW; Kanter EP; Bednarz G; Warczak A; Stachura Z; Tribedi L; Kambara T; Dauvergne D; Kirsch R; Cohen C Phys Rev Lett; 2001 Feb; 86(6):991-4. PubMed ID: 11177992 [TBL] [Abstract][Full Text] [Related]
38. Low-energy electron capture by N3+, N4+, and N5+ from hydrogen atoms using merged beams. Huq MS; Havener CC; Phaneuf RA Phys Rev A Gen Phys; 1989 Aug; 40(4):1811-1816. PubMed ID: 9902337 [No Abstract] [Full Text] [Related]
39. Direct visualization of damage cascades in lithium niobate crystals caused by high-energy ions. Zamani-Meymian MR; Peithmann K; Maier K; Schmid H; Mader W J Phys Condens Matter; 2009 Feb; 21(7):075402. PubMed ID: 21817326 [TBL] [Abstract][Full Text] [Related]
40. Double- and single-electron capture in He2++H2 collisions in the energy range from 50 eV to 2 keV. Shimakura N; Kimura M; Lane NF Phys Rev A; 1993 Jan; 47(1):709-710. PubMed ID: 9908971 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]