These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 9907755)
1. Photoionization of the outer shells of radon and radium: Relativistic random-phase approximation for high-Z atoms. Deshmukh PC; Radojevic V; Manson ST Phys Rev A; 1992 May; 45(9):6339-6348. PubMed ID: 9907755 [No Abstract] [Full Text] [Related]
2. Low-energy photoionization of alkali-metal atoms: Relativistic random-phase-approximation calculations. Fink MG; Johnson WR Phys Rev A Gen Phys; 1986 Nov; 34(5):3754-3759. PubMed ID: 9897719 [No Abstract] [Full Text] [Related]
3. Applications of radon and radium isotopes to determine submarine groundwater discharge and flushing times in Todos os Santos Bay, Brazil. Hatje V; Attisano KK; de Souza MFL; Mazzilli B; de Oliveira J; de Araújo Mora T; Burnett WC J Environ Radioact; 2017 Nov; 178-179():136-146. PubMed ID: 28822315 [TBL] [Abstract][Full Text] [Related]
4. Photoionization of beryllium in the multiconfiguration relativistic random-phase approximation. Hsin-Chang Chi; Keh-Ning Huang Phys Rev A; 1991 May; 43(9):4742-4745. PubMed ID: 9905592 [No Abstract] [Full Text] [Related]
5. Photoionization of Al+ ions: A relativistic random-phase-approximation study. Deshmukh PC; Nasreen G; Manson ST Phys Rev A Gen Phys; 1988 Jul; 38(1):504-505. PubMed ID: 9900193 [No Abstract] [Full Text] [Related]
6. Extensive relativistic-random-phase-approximation study of photoionization from atomic ytterbium. Deshmukh PC; Manson ST Phys Rev A Gen Phys; 1986 Dec; 34(6):4757-4761. PubMed ID: 9897860 [No Abstract] [Full Text] [Related]
7. Application of the relativistic random-phase approximation to Xe 5s photoionization. Deshmukh PC; Manson ST Phys Rev A Gen Phys; 1985 Nov; 32(5):3109. PubMed ID: 9896459 [No Abstract] [Full Text] [Related]
8. Relaxed relativistic random-phase-approximation calculations of photoionization amplitudes and phases for the 4d subshell of xenon. Johnson WR; Cheng KT Phys Rev A; 1992 Sep; 46(5):2952-2954. PubMed ID: 9908457 [No Abstract] [Full Text] [Related]
9. Ionic bonding of lanthanides, as influenced by d- and f-atomic orbitals, by core-shells and by relativity. Ji WX; Xu W; Schwarz WH; Wang SG J Comput Chem; 2015 Mar; 36(7):449-58. PubMed ID: 25565146 [TBL] [Abstract][Full Text] [Related]
10. A systematic sequence of relativistic approximations. Dyall KG J Comput Chem; 2002 Jun; 23(8):786-93. PubMed ID: 12012355 [TBL] [Abstract][Full Text] [Related]
11. Multiconfiguration Tamm-Dancoff approximation applied to photoionization of the outer shells of Be and Mg. Radojevic V; Johnson WR Phys Rev A Gen Phys; 1985 May; 31(5):2991-2994. PubMed ID: 9895854 [No Abstract] [Full Text] [Related]
12. Dynamical relativistic effects in photoionization: spin-orbit-resolved angular distributions of xenon 4d photoelectrons near the Cooper minimum. Wang H; Snell G; Hemmers O; Sant'Anna MM; Sellin I; Berrah N; Lindle DW; Deshmukh PC; Haque N; Manson ST Phys Rev Lett; 2001 Sep; 87(12):123004. PubMed ID: 11580505 [TBL] [Abstract][Full Text] [Related]
13. Nondipole effects in the photoionization of xe 4d5/2 and 4d3/2: evidence for quadrupole satellites. Hemmers O; Guillemin R; Rolles D; Wolska A; Lindle DW; Cheng KT; Johnson WR; Zhou HL; Manson ST Phys Rev Lett; 2004 Sep; 93(11):113001. PubMed ID: 15447334 [TBL] [Abstract][Full Text] [Related]
14. Radon and radium concentration in water from North-West of Romania and the estimated doses. Moldovan M; Benea V; Niţă DC; Papp B; Burghele BD; Bican-Brişan N; Cosma C Radiat Prot Dosimetry; 2014 Nov; 162(1-2):96-100. PubMed ID: 25031036 [TBL] [Abstract][Full Text] [Related]
15. Rearrangement effects in photoionization. Amusia MY Appl Opt; 1980 Dec; 19(23):4042-50. PubMed ID: 20234734 [TBL] [Abstract][Full Text] [Related]
16. ASSESSMENT OF RADIUM ACTIVITY CONCENTRATION AND RADON EXHALATION RATES IN IBERIAN PENINSULA BUILDING MATERIALS. Andrade E; Miró C; Reis M; Santos M; Madruga MJ Radiat Prot Dosimetry; 2017 Nov; 177(1-2):31-35. PubMed ID: 28981796 [TBL] [Abstract][Full Text] [Related]
17. Radon emanation from radium specific adsorbents. Alabdula'aly AI; Maghrawy HB Water Res; 2010 Jan; 44(1):177-84. PubMed ID: 19879620 [TBL] [Abstract][Full Text] [Related]
18. A COMPARATIVE STUDY OF RADIUM CONTENT AND RADON EXHALATION RATE FROM SOIL SAMPLES USING ACTIVE AND PASSIVE TECHNIQUES. Yadav M; Prasad M; Joshi V; Gusain GS; Ramola RC Radiat Prot Dosimetry; 2016 Oct; 171(2):254-256. PubMed ID: 27056143 [TBL] [Abstract][Full Text] [Related]
19. RADIUM AND RADON EXHALATION RATE IN SOIL SAMPLES OF HASSAN DISTRICT OF SOUTH KARNATAKA, INDIA. Jagadeesha BG; Narayana Y Radiat Prot Dosimetry; 2016 Oct; 171(2):238-242. PubMed ID: 27032778 [TBL] [Abstract][Full Text] [Related]
20. Determination of radon and radium concentrations in drinking water samples around the city of Kutahya. Sahin L; Cetinkaya H; Murat Saç M; Içhedef M Radiat Prot Dosimetry; 2013 Aug; 155(4):474-82. PubMed ID: 23417055 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]