These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 9908826)

  • 1. Electronic energy loss for helium channeling in silicon.
    Logan LR; Murthy CS; Srinivasan GR
    Phys Rev A; 1992 Nov; 46(9):5754-5760. PubMed ID: 9908826
    [No Abstract]   [Full Text] [Related]  

  • 2. Disparate Energy Scaling of Trajectory-Dependent Electronic Excitations for Slow Protons and He Ions.
    Lohmann S; Primetzhofer D
    Phys Rev Lett; 2020 Mar; 124(9):096601. PubMed ID: 32202865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proof of principle of helium-beam radiography using silicon pixel detectors for energy deposition measurement, identification, and tracking of single ions.
    Gehrke T; Gallas R; Jäkel O; Martišíková M
    Med Phys; 2018 Feb; 45(2):817-829. PubMed ID: 29235123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Some effects of electron channeling on electron energy loss spectroscopy.
    Kirkland EJ
    Ultramicroscopy; 2005 Feb; 102(3):199-207. PubMed ID: 15639350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Channeling effects in gold nanoclusters under He ion irradiation: insights from molecular dynamics simulations.
    Ghaderzadeh S; Ghorbani-Asl M; Kretschmer S; Hlawacek G; Krasheninnikov AV
    Nanotechnology; 2020 Jan; 31(3):035302. PubMed ID: 31557746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alterations in synaptic density and myelination in response to exposure to high-energy charged particles.
    Dickstein DL; Talty R; Bresnahan E; Varghese M; Perry B; Janssen WGM; Sowa A; Giedzinski E; Apodaca L; Baulch J; Acharya M; Parihar V; Limoli CL
    J Comp Neurol; 2018 Dec; 526(17):2845-2855. PubMed ID: 30198564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrabroadband, coherent light source based on self-channeling of few-cycle pulses in helium.
    Goulielmakis E; Koehler S; Reiter B; Schultze M; Verhoef AJ; Serebryannikov EE; Zheltikov AM; Krausz F
    Opt Lett; 2008 Jul; 33(13):1407-9. PubMed ID: 18594647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy loss of hydrogen- and helium-ion beams in DNA: calculations based on a realistic energy-loss function of the target.
    Abril I; Garcia-Molina R; Denton CD; Kyriakou I; Emfietzoglou D
    Radiat Res; 2011 Feb; 175(2):247-55. PubMed ID: 21268719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical and experimental comparison of proton and helium-beam radiography using silicon pixel detectors.
    Gehrke T; Amato C; Berke S; Martišíková M
    Phys Med Biol; 2018 Feb; 63(3):035037. PubMed ID: 29311417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-principles calculations of helium and neon desorption from cavities in silicon.
    Eddin AC; Pizzagalli L
    J Phys Condens Matter; 2012 May; 24(17):175006. PubMed ID: 22481168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gentle quantitative measurement of helium density in nanobubbles in silicon by spectrum imaging.
    Alix K; David ML; Lucas G; Alexander DT; Pailloux F; Hébert C; Pizzagalli L
    Micron; 2015 Oct; 77():57-65. PubMed ID: 26093479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fragmentation of ionized doped helium nanodroplets: theoretical evidence for a dopant ejection mechanism.
    Bonhommeau D; Lewerenz M; Halberstadt N
    J Chem Phys; 2008 Feb; 128(5):054302. PubMed ID: 18266445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative transmission electron microscopy analysis of the pressure of helium-filled cracks in implanted silicon.
    Tillmann K; Hging N; Trinkaus H; Luysberg M
    Microsc Microanal; 2004 Apr; 10(2):199-214. PubMed ID: 15306046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Giant Barkas effect observed for light ions channeling in Si.
    Azevedo GM; Grande PL; Behar M; Dias JF; Schiwietz G
    Phys Rev Lett; 2001 Feb; 86(8):1482-5. PubMed ID: 11290173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-specific electronic structure analysis by channeling EELS and first-principles calculations.
    Tatsumi K; Muto S; Yamamoto Y; Ikeno H; Yoshioka S; Tanaka I
    Ultramicroscopy; 2006; 106(11-12):1019-23. PubMed ID: 16867310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic spectroscopy of toluene in helium nanodroplets: evidence for a long-lived excited state.
    Shepperson B; Tandy J; Boatwright A; Feng C; Spence D; Shirley A; Yang S; Ellis AM
    J Phys Chem A; 2013 Dec; 117(50):13591-5. PubMed ID: 24059467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Line broadening in electronic spectra of anthracene derivatives inside superfluid helium nanodroplets.
    Pentlehner D; Greil Ch; Dick B; Slenczka A
    J Chem Phys; 2010 Sep; 133(11):114505. PubMed ID: 20866143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interaction of a nanoscale coherent helium-ion probe with a crystal.
    D'Alfonso AJ; Forbes BD; Allen LJ
    Ultramicroscopy; 2013 Nov; 134():18-22. PubMed ID: 23876709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Helium induced fine structure in the electronic spectra of anthracene derivatives doped into superfluid helium nanodroplets.
    Pentlehner D; Slenczka A
    J Chem Phys; 2015 Jan; 142(1):014311. PubMed ID: 25573565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subsurface-channeling-like energy loss structure of the skipping motion on an ionic crystal.
    Villette J; Borisov AG; Khemliche H; Momeni A; Roncin P
    Phys Rev Lett; 2000 Oct; 85(15):3137-40. PubMed ID: 11019285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.