These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 990940)

  • 61. In search of a medullary swallowing center.
    King BF
    Gastroenterology; 1994 Sep; 107(3):883-5. PubMed ID: 8076776
    [No Abstract]   [Full Text] [Related]  

  • 62. Ascending pathways from an osmotically sensitive region of the medulla oblongata.
    MOREST DK; SUTIN J
    Exp Neurol; 1961 Nov; 4():413-23. PubMed ID: 14475912
    [No Abstract]   [Full Text] [Related]  

  • 63. The Origin and Destination of Certain Afferent and Efferent Tracts in the Medulla Oblongata.
    Russell JS
    Br Med J; 1897 May; 1(1897):1155-6. PubMed ID: 20756982
    [No Abstract]   [Full Text] [Related]  

  • 64. Changes in prefrontal cerebral hemodynamics during intermittent pain stimulation to gingiva: Preliminary study using functional near infrared spectroscopy.
    Sakuma S; Inamoto K; Yamaguchi Y; Takagi S; Higuchi N
    J Dent Sci; 2021 Jul; 16(3):980-986. PubMed ID: 34141113
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A neuroanatomical framework for the central modulation of respiratory sensory processing and cough by the periaqueductal grey.
    McGovern AE; Ajayi IE; Farrell MJ; Mazzone SB
    J Thorac Dis; 2017 Oct; 9(10):4098-4107. PubMed ID: 29268420
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The periaqueductal gray is the site of the antinociceptive action of carbamazepine as related to bradykinin-induced trigeminal pain.
    Foong FW; Satoh M
    Br J Pharmacol; 1984 Oct; 83(2):493-7. PubMed ID: 6487904
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Behavioral functions of the reticular formation.
    Siegel JM
    Brain Res; 1979 Jul; 180(1):69-105. PubMed ID: 114277
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Differential distribution of four types of tooth pulp neurons in the caudal medulla oblongata of the cat.
    Yokota T; Nishikawa Y; Koyama N; Fujino Y
    Brain Res; 1996 Apr; 715(1-2):230-4. PubMed ID: 8739644
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Depolarization of tooth pulp primary afferent fibers in the medulla oblongata.
    Vyklický L; Davies WI; Vesterstrom K; Scott D
    Experientia; 1970 May; 26(5):510-2. PubMed ID: 5444834
    [No Abstract]   [Full Text] [Related]  

  • 70. An electrophysiological study of the central connections of primary afferent nerve fibres from the dental pulp in the cat.
    Greenwood F
    Arch Oral Biol; 1973 Jul; 18(7):771-85. PubMed ID: 4578940
    [No Abstract]   [Full Text] [Related]  

  • 71. Excitability changes in trigeminal primary afferent fibres elicited by dental pulp stimulation in the cat.
    Young RF; King RB
    Arch Oral Biol; 1972 Dec; 17(12):1649-57. PubMed ID: 4509575
    [No Abstract]   [Full Text] [Related]  

  • 72. The Gray Substance of the Medulla Oblongata and Trapezium.
    Br Foreign Med Chir Rev; 1866 Apr; 37(74):315-321. PubMed ID: 30163797
    [No Abstract]   [Full Text] [Related]  

  • 73. Periaqueductal gray and tooth pulp afferent interaction on units in caudal medulla oblongata.
    Yokota T; Hashimoto S
    Brain Res; 1976 Dec; 117(3):508-12. PubMed ID: 990940
    [No Abstract]   [Full Text] [Related]  

  • 74.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 75.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 76.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 77.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 78.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 79.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]     [New Search]
    of 4.