These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 9909652)

  • 1. Spectral linewidth narrowing in a strongly coupled atom-cavity system via squeezed-light excitation of a "vacuum" Rabi resonance.
    Parkins AS; Zoller P; Carmichael HJ
    Phys Rev A; 1993 Jul; 48(1):758-763. PubMed ID: 9909652
    [No Abstract]   [Full Text] [Related]  

  • 2. Rabi sideband narrowing via strongly driven resonance fluorescence in a narrow-bandwidth squeezed vacuum.
    Parkins AS
    Phys Rev A; 1990 Oct; 42(7):4352-4365. PubMed ID: 9904534
    [No Abstract]   [Full Text] [Related]  

  • 3. Suppressing normal mode excitation by quantum interference in a cavity-atom system.
    Zhang J; Hernandez G; Zhu Y
    Opt Express; 2008 May; 16(11):7860-8. PubMed ID: 18545496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation of the vacuum Rabi spectrum for one trapped atom.
    Boca A; Miller R; Birnbaum KM; Boozer AD; McKeever J; Kimble HJ
    Phys Rev Lett; 2004 Dec; 93(23):233603. PubMed ID: 15601159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large and well-defined Rabi splitting in a semiconductor nanogap cavity.
    Uemoto M; Ajiki H
    Opt Express; 2014 Sep; 22(19):22470-8. PubMed ID: 25321717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vacuum Rabi splitting in a coupled system of single quantum dot and photonic crystal cavity: effect of local and propagation Green's functions.
    Yu YC; Liu JF; Zhuo XL; Chen G; Jin CJ; Wang XH
    Opt Express; 2013 Oct; 21(20):23486-97. PubMed ID: 24104262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity.
    Yoshie T; Scherer A; Hendrickson J; Khitrova G; Gibbs HM; Rupper G; Ell C; Shchekin OB; Deppe DG
    Nature; 2004 Nov; 432(7014):200-3. PubMed ID: 15538363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homoclinic chaos in vacuum rabi oscillations of moving two-level atoms.
    Prants SV; Kon'kov LE
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt A):3632-40. PubMed ID: 11088141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theory of quantum light emission from a strongly-coupled single quantum dot photonic-crystal cavity system.
    Hughes S; Yao P
    Opt Express; 2009 Mar; 17(5):3322-30. PubMed ID: 19259169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-bandwidth squeezed light at 1550 nm from a compact monolithic PPKTP cavity.
    Ast S; Mehmet M; Schnabel R
    Opt Express; 2013 Jun; 21(11):13572-9. PubMed ID: 23736610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of optical excitation power on the emission spectra of a strongly coupled quantum dot-micropillar system.
    Münch S; Reitzenstein S; Franeck P; Löffler A; Heindel T; Höfling S; Worschech L; Forchel A
    Opt Express; 2009 Jul; 17(15):12821-8. PubMed ID: 19654688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generating controllable atom-light entanglement with a Raman atom laser system.
    Haine SA; Olsen MK; Hope JJ
    Phys Rev Lett; 2006 Apr; 96(13):133601. PubMed ID: 16711985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensing single atoms in a cavity using a broadband squeezed light.
    Bao DQ; Zhu CJ; Yang YP; Agarwal GS
    Opt Express; 2019 May; 27(11):15540-15547. PubMed ID: 31163749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental study of Rabi-type oscillation induced by tunneling modes in effective near-zero-index metamaterials.
    Zhang L; Zhang Y; Yang Y; Chen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046604. PubMed ID: 21599323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cavity-linewidth narrowing by means of electromagnetically induced transparency.
    Wang H; Goorskey DJ; Burkett WH; Xiao M
    Opt Lett; 2000 Dec; 25(23):1732-4. PubMed ID: 18066329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Terahertz Light-Matter Interaction beyond Unity Coupling Strength.
    Bayer A; Pozimski M; Schambeck S; Schuh D; Huber R; Bougeard D; Lange C
    Nano Lett; 2017 Oct; 17(10):6340-6344. PubMed ID: 28937772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip.
    Colombe Y; Steinmetz T; Dubois G; Linke F; Hunger D; Reichel J
    Nature; 2007 Nov; 450(7167):272-6. PubMed ID: 17994094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracavity cold atomic ensemble with high optical depth.
    Jiang Y; Mei Y; Zou Y; Zuo Y; Du S
    Rev Sci Instrum; 2019 Jan; 90(1):013105. PubMed ID: 30709165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast Transmission Modulation and Recovery via Vibrational Strong Coupling.
    Dunkelberger AD; Davidson Ii RB; Ahn W; Simpkins BS; Owrutsky JC
    J Phys Chem A; 2018 Feb; 122(4):965-971. PubMed ID: 29295621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fiber-optical switch controlled by a single atom.
    O'Shea D; Junge C; Volz J; Rauschenbeutel A
    Phys Rev Lett; 2013 Nov; 111(19):193601. PubMed ID: 24266471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.