These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 9911838)
41. Orientation-dependent atomic model for electron transfer in ion-molecule collisions: Applications to H++H2 and He2++H2. Shingal R; Lin CD Phys Rev A Gen Phys; 1989 Aug; 40(3):1302-1309. PubMed ID: 9902263 [No Abstract] [Full Text] [Related]
42. Precision measurement of the rotational energy-level structure of the three-electron molecule He Semeria L; Jansen P; Merkt F J Chem Phys; 2016 Nov; 145(20):204301. PubMed ID: 27908106 [TBL] [Abstract][Full Text] [Related]
43. Erratum: Orientation-dependent atomic model for electron transfer in ion-molecule collisions: Applications to H++H2 and He2++H2. Shingal R; Lin CD Phys Rev A; 1990 Nov; 42(9):5764. PubMed ID: 9904730 [No Abstract] [Full Text] [Related]
44. Experimental and theoretical studies of the He2+-He system: Differential cross sections for direct, single-, and double-charge-transfer scattering at keV energies. Gao RS; Dutta CM; Lane NF; Smith KA; Stebbings RF; Kimura M Phys Rev A; 1992 May; 45(9):6388-6394. PubMed ID: 9907759 [No Abstract] [Full Text] [Related]
45. Theoretical investigation of the electron capture and loss processes in the collisions of He2+ + Ne. Hong X; Wang F; Jiao Y; Su W; Wang J; Gou B J Chem Phys; 2013 Aug; 139(8):084321. PubMed ID: 24007011 [TBL] [Abstract][Full Text] [Related]
46. Steric asymmetry and lambda-doublet propensities in state-to-state rotationally inelastic scattering of NO(2Pi(1/2)) with He. de Lange MJ; Stolte S; Taatjes CA; Kłos J; Groenenboom GC; van der Avoird A J Chem Phys; 2004 Dec; 121(23):11691-701. PubMed ID: 15634135 [TBL] [Abstract][Full Text] [Related]
47. The structure of the asymmetric helium trimer (3)He(4)He2. Bressanini D J Phys Chem A; 2014 Aug; 118(33):6521-8. PubMed ID: 24828522 [TBL] [Abstract][Full Text] [Related]
48. Fundamental vibration frequency and rotational structure of the first excited vibrational level of the molecular helium ion ( Jansen P; Semeria L; Merkt F J Chem Phys; 2018 Oct; 149(15):154302. PubMed ID: 30342452 [TBL] [Abstract][Full Text] [Related]
49. Charge exchange in collisions of beryllium with its ion. Zhang P; Dalgarno A; Côté R; Bodo E Phys Chem Chem Phys; 2011 Nov; 13(42):19026-35. PubMed ID: 21799991 [TBL] [Abstract][Full Text] [Related]
50. Rotational Excitation of the OH(+) Radical by Collision with H at Low Temperature. Stoecklin T; Gannouni MA; Jaidane NE; Halvick P; Hochlaf M J Phys Chem A; 2015 Dec; 119(51):12599-606. PubMed ID: 26579973 [TBL] [Abstract][Full Text] [Related]
51. Double- and single-electron capture in He2++H2 collisions in the energy range from 50 eV to 2 keV. Shimakura N; Kimura M; Lane NF Phys Rev A; 1993 Jan; 47(1):709-710. PubMed ID: 9908971 [No Abstract] [Full Text] [Related]
52. Confinement induced binding of noble gas atoms. Khatua M; Pan S; Chattaraj PK J Chem Phys; 2014 Apr; 140(16):164306. PubMed ID: 24784269 [TBL] [Abstract][Full Text] [Related]
53. Single- and double-electron capture probabilities in close sub-MeV collisions of He2+ on Ar and N2. Ben-Itzhak I; Mann A; Meron M; Rosner B Phys Rev A Gen Phys; 1989 Sep; 40(6):2928-2934. PubMed ID: 9902505 [No Abstract] [Full Text] [Related]
54. Mixed semiclassical-classical propagators for the Wigner phase space representation. Koda S J Chem Phys; 2016 Apr; 144(15):154108. PubMed ID: 27389210 [TBL] [Abstract][Full Text] [Related]
55. Confinement Effects of a Noble Gas Dimer Inside a Fullerene Cage: Can It Be Used as an Acceptor in a DSSC? Paul D; Dua H; Sarkar U Front Chem; 2020; 8():621. PubMed ID: 32850644 [TBL] [Abstract][Full Text] [Related]
59. Vibrationally enhanced charge transfer and mode/bond-specific H+ and D+ transfer in the reaction of HOD+ with N2O. Bell DM; Anderson SL J Chem Phys; 2013 Sep; 139(11):114305. PubMed ID: 24070288 [TBL] [Abstract][Full Text] [Related]
60. Effect of substitution on the bonding in He dimer confined within dodecahedrane: A computational study. Jana G; Chattaraj PK J Comput Chem; 2020 Oct; 41(28):2398-2405. PubMed ID: 32827169 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]