These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
13. Testing three-body quantum electrodynamics with trapped Ti20+ ions: evidence for a Z-dependent divergence between experiment and calculation. Chantler CT; Kinnane MN; Gillaspy JD; Hudson LT; Payne AT; Smale LF; Henins A; Pomeroy JM; Tan JN; Kimpton JA; Takacs E; Makonyi K Phys Rev Lett; 2012 Oct; 109(15):153001. PubMed ID: 23102303 [TBL] [Abstract][Full Text] [Related]
14. Cluster perturbation theory. IV. Convergence of cluster perturbation series for energies and molecular properties. Pawłowski F; Olsen J; Jørgensen P J Chem Phys; 2019 Apr; 150(13):134111. PubMed ID: 30954043 [TBL] [Abstract][Full Text] [Related]
15. Measurement of the 1s2s 1S0-1s2p 3P1 intercombination interval in helium-like silicon. Redshaw M; Myers EG Phys Rev Lett; 2002 Jan; 88(2):023002. PubMed ID: 11801009 [TBL] [Abstract][Full Text] [Related]
16. Relativistic configuration-interaction calculations of n=2 triplet states of heliumlike ions. Chen MH; Cheng KT; Johnson WR Phys Rev A; 1993 May; 47(5):3692-3703. PubMed ID: 9909374 [No Abstract] [Full Text] [Related]
17. Relativistic all-order many-body calculations of the n=1 and n=2 states of heliumlike ions. Plante DR; Johnson WR; Sapirstein J Phys Rev A; 1994 May; 49(5):3519-3530. PubMed ID: 9910650 [No Abstract] [Full Text] [Related]
18. Relativistic configuration-interaction calculations for the ground state and n=2 singlet states of heliumlike ions. Cheng KT; Chen MH; Johnson WR; Sapirstein J Phys Rev A; 1994 Jul; 50(1):247-255. PubMed ID: 9910889 [No Abstract] [Full Text] [Related]
19. The relativistic complete active-space second-order perturbation theory with the four-component Dirac Hamiltonian. Abe M; Nakajima T; Hirao K J Chem Phys; 2006 Dec; 125(23):234110. PubMed ID: 17190550 [TBL] [Abstract][Full Text] [Related]
20. Relativistic many-body perturbation theory based on the no-pair Dirac-Coulomb-Breit Hamiltonian: Relativistic correlation energies for the noble-gas sequence through Rn (Z=86), the group-IIB atoms through Hg, and the ions of Ne isoelectronic sequence. Ishikawa Y; Koc K Phys Rev A; 1994 Dec; 50(6):4733-4742. PubMed ID: 9911470 [No Abstract] [Full Text] [Related] [Next] [New Search]