These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 9912197)

  • 1. Double-linked Hylleraas configuration-interaction calculation for the nonrelativistic ground-state energy of the Be atom.
    Büsse G; Kleindienst H
    Phys Rev A; 1995 Jun; 51(6):5019-5020. PubMed ID: 9912197
    [No Abstract]   [Full Text] [Related]  

  • 2. Hylleraas-configuration-interaction nonrelativistic energies for the ¹S ground states of the beryllium isoelectronic sequence.
    Sims JS; Hagstrom SA
    J Chem Phys; 2014 Jun; 140(22):224312. PubMed ID: 24929393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exponentially correlated Hylleraas-configuration interaction non-relativistic energy of the
    Sims JS; Padhy B; Ruiz MB
    Int J Quantum Chem; 2021 Feb; 121(4):. PubMed ID: 36875794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hylleraas-Configuration Interaction study of the
    Sims JS
    J Phys B At Mol Opt Phys; 2017 Dec; 50(24):. PubMed ID: 29379225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Configuration-interaction and Hylleraas configuration-interaction methods in valence-bond theory: Calculation of the nuclear shielding constant for the ground state of the hydrogen molecule.
    Komasa J; Cencek W; Rychlewski J
    Phys Rev A; 1992 Sep; 46(5):2351-2355. PubMed ID: 9908393
    [No Abstract]   [Full Text] [Related]  

  • 6. High precision variational calculations for the Born-Oppenheimer energies of the ground state of the hydrogen molecule.
    Sims JS; Hagstrom SA
    J Chem Phys; 2006 Mar; 124(9):94101. PubMed ID: 16526839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compact wave functions for the beryllium isoelectronic series, Li- to Ne6+: a standard Hylleraas approach.
    King FW; Quicker D; Langer J
    J Chem Phys; 2011 Mar; 134(12):124114. PubMed ID: 21456652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variational calculation for the doubly excited state (2p2)3Pe of Be III.
    Bhattacharyya S; Sil AN; Mukherjee TK; Mukherjee PK
    J Chem Phys; 2005 Nov; 123(19):196102. PubMed ID: 16321117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Confined helium atom low-lying S states analyzed through correlated Hylleraas wave functions and the Kohn-Sham model.
    Aquino N; Garza J; Flores-Riveros A; Rivas-Silva JF; Sen KD
    J Chem Phys; 2006 Feb; 124(5):054311. PubMed ID: 16468873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation energy extrapolation by intrinsic scaling. V. Electronic energy, atomization energy, and enthalpy of formation of water.
    Bytautas L; Ruedenberg K
    J Chem Phys; 2006 May; 124(17):174304. PubMed ID: 16689568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate ab initio potential energy curve of F2. I. Nonrelativistic full valence configuration interaction energies using the correlation energy extrapolation by intrinsic scaling method.
    Bytautas L; Nagata T; Gordon MS; Ruedenberg K
    J Chem Phys; 2007 Oct; 127(16):164317. PubMed ID: 17979348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct ab initio dynamics study on the rate constants and kinetics isotope effects of CH(3)O+H-->CH(2)O+H(2) reaction.
    Li QS; Zhang Y; Zhang S
    J Chem Phys; 2004 Nov; 121(19):9474-80. PubMed ID: 15538868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate ab initio potential energy curve of O2. I. Nonrelativistic full configuration interaction valence correlation by the correlation energy extrapolation by intrinsic scaling method.
    Bytautas L; Ruedenberg K
    J Chem Phys; 2010 Feb; 132(7):074109. PubMed ID: 20170217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation energies for He isoelectronic sequence with Z=2-116 from four-component relativistic configuration interactions.
    Watanabe Y; Tatewaki H
    J Chem Phys; 2005 Aug; 123(7):074322. PubMed ID: 16229585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate nonrelativistic ground-state energies of 3d transition metal atoms.
    Scemama A; Applencourt T; Giner E; Caffarel M
    J Chem Phys; 2014 Dec; 141(24):244110. PubMed ID: 25554136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale parallel configuration interaction. I. Nonrelativistic and scalar-relativistic general active space implementation with application to (Rb-Ba)+.
    Knecht S; Jensen HJ; Fleig T
    J Chem Phys; 2008 Jan; 128(1):014108. PubMed ID: 18190186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hylleraas hydride binding energy: diatomic electron affinities.
    Chen ES; Keith H; Lim T; Pham D; Rosenthal R; Herder C; Pai S; Flores RA; Chen EC
    J Mol Model; 2015 Apr; 21(4):79. PubMed ID: 25758340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Communication: Toward an improved control of the fixed-node error in quantum Monte Carlo: The case of the water molecule.
    Caffarel M; Applencourt T; Giner E; Scemama A
    J Chem Phys; 2016 Apr; 144(15):151103. PubMed ID: 27389201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relativistic corrections to the ground states of HD and D
    Wang L; Yan ZC
    Phys Chem Chem Phys; 2018 Oct; 20(37):23948-23953. PubMed ID: 30209496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron affinity of (7)Li calculated with the inclusion of nuclear motion and relativistic corrections.
    Stanke M; Kedziera D; Bubin S; Adamowicz L
    J Chem Phys; 2007 Oct; 127(13):134107. PubMed ID: 17919011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.