These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 9913184)

  • 61. Parallels between multiple population-period transient spectroscopy and multidimensional coherence spectroscopies.
    Khurmi C; Berg MA
    J Chem Phys; 2008 Aug; 129(6):064504. PubMed ID: 18715082
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Superradiance and subradiance in an inhomogeneously broadened ensemble of two-level systems coupled to a low-Q cavity.
    Temnov VV; Woggon U
    Phys Rev Lett; 2005 Dec; 95(24):243602. PubMed ID: 16384377
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Electron-phonon coupling and intervalley splitting determine the linewidth of single-electron transport through PbSe nanocrystals.
    Overgaag K; Vanmaekelbergh D; Liljeroth P; Mahieu G; Grandidier B; Delerue C; Allan G
    J Chem Phys; 2009 Dec; 131(22):224510. PubMed ID: 20001060
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Spectrally inhomogeneous BOLD contrast changes detected in rodent tumors with high spectral and spatial resolution MRI.
    Al-Hallaq HA; Fan X; Zamora M; River JN; Moulder JE; Karczmar GS
    NMR Biomed; 2002 Feb; 15(1):28-36. PubMed ID: 11840550
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Vacuum Rabi splitting in a coupled system of single quantum dot and photonic crystal cavity: effect of local and propagation Green's functions.
    Yu YC; Liu JF; Zhuo XL; Chen G; Jin CJ; Wang XH
    Opt Express; 2013 Oct; 21(20):23486-97. PubMed ID: 24104262
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Numerical analysis of homogeneous and inhomogeneous intermittent search strategies.
    Schwarz K; Schröder Y; Rieger H
    Phys Rev E; 2016 Oct; 94(4-1):042133. PubMed ID: 27841552
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Comment on "Vacuum Rabi splitting in a semiconductor circuit QED system".
    Wallraff A; Stockklauser A; Ihn T; Petta JR; Blais A
    Phys Rev Lett; 2013 Dec; 111(24):249701. PubMed ID: 24483705
    [No Abstract]   [Full Text] [Related]  

  • 68. Conditional spin squeezing of a large ensemble via the vacuum Rabi splitting.
    Chen Z; Bohnet JG; Sankar SR; Dai J; Thompson JK
    Phys Rev Lett; 2011 Apr; 106(13):133601. PubMed ID: 21517382
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Thermodynamics of molecules strongly coupled to the vacuum field.
    Canaguier-Durand A; Devaux E; George J; Pang Y; Hutchison JA; Schwartz T; Genet C; Wilhelms N; Lehn JM; Ebbesen TW
    Angew Chem Int Ed Engl; 2013 Sep; 52(40):10533-6. PubMed ID: 23946186
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity.
    Yoshie T; Scherer A; Hendrickson J; Khitrova G; Gibbs HM; Rupper G; Ell C; Shchekin OB; Deppe DG
    Nature; 2004 Nov; 432(7014):200-3. PubMed ID: 15538363
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Analysis of the absorption spectrum of photosystem II reaction centers: temperature dependence, pigment assignment, and inhomogeneous broadening.
    Konermann L; Holzwarth AR
    Biochemistry; 1996 Jan; 35(3):829-42. PubMed ID: 8547263
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy.
    Lomsadze B; Cundiff ST
    Science; 2017 Sep; 357(6358):1389-1391. PubMed ID: 28963253
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Efficient energy exchange between plasmon and cavity modes via Rabi-analogue splitting in a hybrid plasmonic nanocavity.
    Chen S; Li G; Lei D; Cheah KW
    Nanoscale; 2013 Oct; 5(19):9129-33. PubMed ID: 23913114
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Robustness of the far-field response of nonlocal plasmonic ensembles.
    Tserkezis C; Maack JR; Liu Z; Wubs M; Mortensen NA
    Sci Rep; 2016 Jun; 6():28441. PubMed ID: 27329703
    [TBL] [Abstract][Full Text] [Related]  

  • 75. High resolution 1H nuclear magnetic resonance of a transmembrane peptide.
    Davis JH; Auger M; Hodges RS
    Biophys J; 1995 Nov; 69(5):1917-32. PubMed ID: 8580335
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Self-induced transparency quadratic solitons.
    Haghgoo S; Ponomarenko SA
    Opt Express; 2012 Jun; 20(13):13988-95. PubMed ID: 22714464
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [Effect of saturation and velocity selective population in 6S1/2 --> 6P3/2 laser excitation in Cs vapor mixed with Ar].
    Liu J; Zhou HW; Zhang GL; Dai K; Shen YF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Sep; 28(9):1958-61. PubMed ID: 19093539
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Multi-photon transitions and Rabi resonance in continuous wave EPR.
    Saiko AP; Fedaruk R; Markevich SA
    J Magn Reson; 2015 Oct; 259():47-55. PubMed ID: 26295168
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Quantum-limited linewidth of a bad-cavity laser with inhomogeneous broadening.
    Khoury AZ; Kolobov MI; Davidovich L
    Phys Rev A; 1996 Feb; 53(2):1120-1125. PubMed ID: 9912990
    [No Abstract]   [Full Text] [Related]  

  • 80. Application of magnetic field over-modulation for improved EPR linewidth measurements using probes with Lorentzian lineshape.
    Deng Y; Pandian RP; Ahmad R; Kuppusamy P; Zweier JL
    J Magn Reson; 2006 Aug; 181(2):254-61. PubMed ID: 16759891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.