These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 9914151)

  • 1. Fuel use in flight and its dependence on nectar feeding in the hawkmoth Amphion floridensis.
    O'Brien DM
    J Exp Biol; 1999 Jan; 202(Pt 4):441-451. PubMed ID: 9914151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fuel use in hawkmoth (Amphion floridensis) flight muscle: enzyme activities and flux rates.
    O'Brien DM; Suarez RK
    J Exp Zool; 2001 Jul; 290(2):108-14. PubMed ID: 11471140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hawkmoths use nectar sugar to reduce oxidative damage from flight.
    Levin E; Lopez-Martinez G; Fane B; Davidowitz G
    Science; 2017 Feb; 355(6326):733-735. PubMed ID: 28209896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetic cost of hovering flight in nectar-feeding bats (Phyllostomidae: Glossophaginae) and its scaling in moths, birds and bats.
    Voigt CC; Winter Y
    J Comp Physiol B; 1999 Feb; 169(1):38-48. PubMed ID: 10093905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eat, Drink, Live: Foraging behavior of a nectarivore when relative humidity varies but nectar resources do not.
    Contreras HL; Goyret J; Pierce CT; Raguso RA; Davidowitz G
    J Insect Physiol; 2022; 143():104450. PubMed ID: 36265566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of ambient humidity on the foraging behavior of the hawkmoth Manduca sexta.
    Contreras HL; Goyret J; von Arx M; Pierce CT; Bronstein JL; Raguso RA; Davidowitz G
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Nov; 199(11):1053-63. PubMed ID: 23756587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Honeybee males use highly concentrated nectar as fuel for mating flights.
    Hayashi M; Nakamura J; Sasaki K; Harano KI
    J Insect Physiol; 2016; 93-94():50-55. PubMed ID: 27546782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aedes aegypti: size, reserves, survival, and flight potential.
    Briegel H; Knüsel I; Timmermann SE
    J Vector Ecol; 2001 Jun; 26(1):21-31. PubMed ID: 11469181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual fitness benefits of post-mating sugar meals for female hawkmoths (Hyles lineata).
    von Arx M; Sullivan KA; Raguso RA
    J Insect Physiol; 2013 Apr; 59(4):458-65. PubMed ID: 23376765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Foraging behavior adjustments related to changes in nectar sugar concentration in phyllostomid bats.
    Ayala-Berdon J; Rodríguez-Peña N; Orduña-Villaseñor M; Stoner KE; Kelm DH; Schondube JE
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Oct; 160(2):143-8. PubMed ID: 21664982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flight muscle enzymes and metabolic flux rates during hovering flight of the nectar bat, Glossophaga soricina: further evidence of convergence with hummingbirds.
    Suarez RK; Welch KC; Hanna SK; Herrera M LG
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Jun; 153(2):136-40. PubMed ID: 19535035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Honeybee colonies provide foragers with costly fuel to promote pollen collection.
    Harano KI
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2020 Jul; 206(4):587-595. PubMed ID: 32468078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the cost of short flights in a nectarivorous and a non-nectarivorous bird.
    Hambly C; Pinshow B; Wiersma P; Verhulst S; Piertney SB; Harper EJ; Speakman JR
    J Exp Biol; 2004 Oct; 207(Pt 22):3959-68. PubMed ID: 15472026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flight duration and flight muscle ultrastructure of unfed hawk moths.
    Wone BWM; Pathak J; Davidowitz G
    Arthropod Struct Dev; 2018 Sep; 47(5):457-464. PubMed ID: 29782921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flight speed and body mass of nectar-feeding bats (Glossophaginae) during foraging.
    Winter Y
    J Exp Biol; 1999 Jul; 202(Pt 14):1917-30. PubMed ID: 10377273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adjustment of fuel loads in stingless bees (Melipona subnitida).
    Harano KI; Maia-Silva C; Hrncir M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2020 Jan; 206(1):85-94. PubMed ID: 31955221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Associative learning of non-sugar nectar components: amino acids modify nectar preference in a hawkmoth.
    Broadhead GT; Raguso RA
    J Exp Biol; 2021 Jun; 224(12):. PubMed ID: 34142140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The power of feeder-mask respirometry as a method for examining hummingbird energetics.
    Welch KC
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Mar; 158(3):276-86. PubMed ID: 20656051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of factors influencing flight performance of field-collected and laboratory-reared, overwintered, and nonoverwintered cactus moths fed with field-collected host plants.
    Sarvary MA; Hight SD; Carpenter JE; Bloem S; Bloem KA; Dorn S
    Environ Entomol; 2008 Oct; 37(5):1291-9. PubMed ID: 19036209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cage size and flight speed of the tobacco hawkmoth Manduca sexta.
    Stevenson R; Corbo K; Baca L; Le Q
    J Exp Biol; 1995; 198(Pt 8):1665-72. PubMed ID: 9319572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.