These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

625 related articles for article (PubMed ID: 9914263)

  • 1. Current-source density analysis in the rat olfactory bulb: laminar distribution of kainate/AMPA- and NMDA-receptor-mediated currents.
    Aroniadou-Anderjaska V; Ennis M; Shipley MT
    J Neurophysiol; 1999 Jan; 81(1):15-28. PubMed ID: 9914263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glomerular synaptic responses to olfactory nerve input in rat olfactory bulb slices.
    Aroniadou-Anderjaska V; Ennis M; Shipley MT
    Neuroscience; 1997 Jul; 79(2):425-34. PubMed ID: 9200726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complementary postsynaptic activity patterns elicited in olfactory bulb by stimulation of mitral/tufted and centrifugal fiber inputs to granule cells.
    Laaris N; Puche A; Ennis M
    J Neurophysiol; 2007 Jan; 97(1):296-306. PubMed ID: 17035366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dendrodendritic recurrent excitation in mitral cells of the rat olfactory bulb.
    Aroniadou-Anderjaska V; Ennis M; Shipley MT
    J Neurophysiol; 1999 Jul; 82(1):489-94. PubMed ID: 10400976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GABAA and glutamate receptor involvement in dendrodendritic synaptic interactions from salamander olfactory bulb.
    Wellis DP; Kauer JS
    J Physiol; 1993 Sep; 469():315-39. PubMed ID: 7903696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tufted cell dendrodendritic inhibition in the olfactory bulb is dependent on NMDA receptor activity.
    Christie JM; Schoppa NE; Westbrook GL
    J Neurophysiol; 2001 Jan; 85(1):169-73. PubMed ID: 11152717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organization of inhibition in the rat olfactory bulb external plexiform layer.
    Ezeh PI; Wellis DP; Scott JW
    J Neurophysiol; 1993 Jul; 70(1):263-74. PubMed ID: 8395579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-methyl-D-aspartate receptors at parallel fiber synapses in the dorsal cochlear nucleus.
    Manis PB; Molitor SC
    J Neurophysiol; 1996 Sep; 76(3):1639-56. PubMed ID: 8890282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tonic and synaptically evoked presynaptic inhibition of sensory input to the rat olfactory bulb via GABA(B) heteroreceptors.
    Aroniadou-Anderjaska V; Zhou FM; Priest CA; Ennis M; Shipley MT
    J Neurophysiol; 2000 Sep; 84(3):1194-203. PubMed ID: 10979995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic organization and neurotransmitters in the rat accessory olfactory bulb.
    Jia C; Chen WR; Shepherd GM
    J Neurophysiol; 1999 Jan; 81(1):345-55. PubMed ID: 9914294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Olfactory nerve-evoked, metabotropic glutamate receptor-mediated synaptic responses in rat olfactory bulb mitral cells.
    Ennis M; Zhu M; Heinbockel T; Hayar A
    J Neurophysiol; 2006 Apr; 95(4):2233-41. PubMed ID: 16394070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gamma-frequency excitatory input to granule cells facilitates dendrodendritic inhibition in the rat olfactory Bulb.
    Halabisky B; Strowbridge BW
    J Neurophysiol; 2003 Aug; 90(2):644-54. PubMed ID: 12711716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of synaptic events in the mouse accessory olfactory bulb with current source-density techniques.
    Kaba H; Keverne EB
    Neuroscience; 1992 Jul; 49(2):247-54. PubMed ID: 1359450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dendrodendritic inhibition in the olfactory bulb is driven by NMDA receptors.
    Schoppa NE; Kinzie JM; Sahara Y; Segerson TP; Westbrook GL
    J Neurosci; 1998 Sep; 18(17):6790-802. PubMed ID: 9712650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of N-methyl-D-aspartate glutamate receptor antagonists on oscillatory signal propagation in the guinea-pig accessory olfactory bulb slice: characterization by optical, field potential and patch clamp recordings.
    Sugai T; Onoda N
    Neuroscience; 2005; 135(2):583-94. PubMed ID: 16112479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of dendrites of mitral, displaced mitral, tufted, and granule cells in the rabbit olfactory bulb.
    Mori K; Kishi K; Ojima H
    J Comp Neurol; 1983 Sep; 219(3):339-55. PubMed ID: 6619342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-lasting depolarizations in mitral cells of the rat olfactory bulb.
    Carlson GC; Shipley MT; Keller A
    J Neurosci; 2000 Mar; 20(5):2011-21. PubMed ID: 10684902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane and synaptic properties of mitral cells in slices of rat olfactory bulb.
    Chen WR; Shepherd GM
    Brain Res; 1997 Jan; 745(1-2):189-96. PubMed ID: 9037409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blocking of Dendrodendritic Inhibition Unleashes Widely Spread Lateral Propagation of Odor-evoked Activity in the Mouse Olfactory Bulb.
    Shang M; Xing J
    Neuroscience; 2018 Nov; 391():50-59. PubMed ID: 30208337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of external plexiform layer interneurons in mouse olfactory bulb slices.
    Hamilton KA; Heinbockel T; Ennis M; Szabó G; Erdélyi F; Hayar A
    Neuroscience; 2005; 133(3):819-29. PubMed ID: 15896912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.