BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 9914367)

  • 1. A neocentromere on human chromosome 3 without detectable alpha-satellite DNA forms morphologically normal kinetochores.
    Wandall A; Tranebjaerg L; Tommerup N
    Chromosoma; 1998 Dec; 107(6-7):359-65. PubMed ID: 9914367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interstitial deletion of proximal 8q including part of the centromere from unbalanced segregation of a paternal deletion/marker karyotype with neocentromere formation at 8p22.
    Burnside RD; Ibrahim J; Flora C; Schwartz S; Tepperberg JH; Papenhausen PR; Warburton PE
    Cytogenet Genome Res; 2011; 132(4):227-32. PubMed ID: 21212645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a maize neocentromere in an oat-maize addition line.
    Topp CN; Okagaki RJ; Melo JR; Kynast RG; Phillips RL; Dawe RK
    Cytogenet Genome Res; 2009; 124(3-4):228-38. PubMed ID: 19556776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hamster chromosomes containing amplified human alpha-satellite DNA show delayed sister chromatid separation in the absence of de novo kinetochore formation.
    Warburton PE; Cooke HJ
    Chromosoma; 1997 Aug; 106(3):149-59. PubMed ID: 9233988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prenatal molecular cytogenetic diagnosis of partial tetrasomy 10p due to neocentromere formation in an inversion duplication analphoid marker chromosome.
    Levy B; Papenhausen P; Tepperberg J; Dunn T; Fallet S; Magid M; Kardon N; Hirschhorn K; Warburton P
    Cytogenet Cell Genet; 2000; 91(1-4):165-70. PubMed ID: 11173851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neocentromere-mediated chromosome movement in maize.
    Yu HG; Hiatt EN; Chan A; Sweeney M; Dawe RK
    J Cell Biol; 1997 Nov; 139(4):831-40. PubMed ID: 9362502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of alphoid DNA variation and kinetochore size in human chromosome 21: evidence against pathological significance of alphoid satellite DNA diminutions.
    Marzais B; Vorsanova SG; Roizes G; Yurov YB
    Tsitol Genet; 1999; 33(1):25-31. PubMed ID: 10330695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The centromere: kinetochore complex.
    Vig BK
    Southeast Asian J Trop Med Public Health; 1995; 26 Suppl 1():68-76. PubMed ID: 8629145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular architecture of the kinetochore-microtubule interface.
    Cheeseman IM; Desai A
    Nat Rev Mol Cell Biol; 2008 Jan; 9(1):33-46. PubMed ID: 18097444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mouse satellite DNA, centromere structure, and sister chromatid pairing.
    Lica LM; Narayanswami S; Hamkalo BA
    J Cell Biol; 1986 Oct; 103(4):1145-51. PubMed ID: 2429969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular characterization of human minichromosomes with centromere from chromosome 1 in human-hamster hybrid cells.
    Carine K; Jacquemin-Sablon A; Waltzer E; Mascarello J; Scheffler IE
    Somat Cell Mol Genet; 1989 Sep; 15(5):445-60. PubMed ID: 2781415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CENP-A associated complex satellite DNA in the kinetochore of the Indian muntjac.
    Vafa O; Shelby RD; Sullivan KF
    Chromosoma; 1999 Nov; 108(6):367-74. PubMed ID: 10591996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A neocentromere derived from a supernumerary marker deleted from the long arm of chromosome 6.
    Qin N; Bartley J; Wang JC; Warburton PE
    Cytogenet Genome Res; 2007; 119(1-2):154-7. PubMed ID: 18160796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A stable acentric marker chromosome: possible existence of an intercalary ancient centromere at distal 8p.
    Ohashi H; Wakui K; Ogawa K; Okano T; Niikawa N; Fukushima Y
    Am J Hum Genet; 1994 Dec; 55(6):1202-8. PubMed ID: 7977381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexibility of centromere and kinetochore structures.
    Burrack LS; Berman J
    Trends Genet; 2012 May; 28(5):204-12. PubMed ID: 22445183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo centromere formation in pericentromeric region of rice chromosome 8.
    Xue C; Liu G; Sun S; Liu X; Guo R; Cheng Z; Yu H; Gu M; Liu K; Zhou Y; Zhang T; Gong Z
    Plant J; 2022 Aug; 111(3):859-871. PubMed ID: 35678753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetochores moving away from their associated pole do not exert a significant pushing force on the chromosome.
    Khodjakov A; Rieder CL
    J Cell Biol; 1996 Oct; 135(2):315-27. PubMed ID: 8896591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neocentromere formation in a stable ring 1p32-p36.1 chromosome.
    Slater HR; Nouri S; Earle E; Lo AW; Hale LG; Choo KH
    J Med Genet; 1999 Dec; 36(12):914-8. PubMed ID: 10593999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The centromere-kinetochore complex: a repeat subunit model.
    Zinkowski RP; Meyne J; Brinkley BR
    J Cell Biol; 1991 Jun; 113(5):1091-110. PubMed ID: 1828250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extreme reduction of chromosome-specific alpha-satellite array is unusually common in human chromosome 21.
    Lo AW; Liao GC; Rocchi M; Choo KH
    Genome Res; 1999 Oct; 9(10):895-908. PubMed ID: 10523519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.