These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 9914404)

  • 1. Monte carlo simulation of vesicular release, spatiotemporal distribution of glutamate in synaptic cleft and generation of postsynaptic currents.
    Glavinovíc MI
    Pflugers Arch; 1999 Feb; 437(3):462-70. PubMed ID: 9914404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wavelet analysis of nonstationary fluctuations of Monte Carlo-simulated excitatory postsynaptic currents.
    Aristizabal F; Glavinovic MI
    Biophys J; 2003 Oct; 85(4):2170-85. PubMed ID: 14507683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of quantal transmission at CA1 synapses.
    Raghavachari S; Lisman JE
    J Neurophysiol; 2004 Oct; 92(4):2456-67. PubMed ID: 15115789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulation of spontaneous miniature excitatory postsynaptic currents in rat hippocampal synapse in the presence and absence of desensitization.
    Glavinovíc MI; Rabie HR
    Pflugers Arch; 1998 Jan; 435(2):193-202. PubMed ID: 9382931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo simulation of release of vesicular content in neuroendocrine cells.
    Rabie HR; Rong J; Glavinović MI
    Biol Cybern; 2006 Jun; 94(6):483-99. PubMed ID: 16550439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulation of fast excitatory synaptic transmission at a hippocampal synapse.
    Wahl LM; Pouzat C; Stratford KJ
    J Neurophysiol; 1996 Feb; 75(2):597-608. PubMed ID: 8714637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of geometrical parameters on synaptic transmission: a Monte Carlo simulation study.
    Kruk PJ; Korn H; Faber DS
    Biophys J; 1997 Dec; 73(6):2874-90. PubMed ID: 9414202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic model of central synapses: slow diffusion of transmitter interacting with spatially distributed receptors and transporters.
    Trommershäuser J; Marienhagen J; Zippelius A
    J Theor Biol; 1999 May; 198(1):101-20. PubMed ID: 10329118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Realistic modelling of receptor activation in hippocampal excitatory synapses: analysis of multivesicular release, release location, temperature and synaptic cross-talk.
    Boucher J; Kröger H; Sík A
    Brain Struct Funct; 2010 Jul; 215(1):49-65. PubMed ID: 20526850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Brownian simulation model of glutamate synaptic diffusion in the femtosecond time scale.
    Ventriglia F; Di Maio V
    Biol Cybern; 2000 Aug; 83(2):93-109. PubMed ID: 10966049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmitter concentration profiles in the synaptic cleft: an analytical model of release and diffusion.
    Kleinle J; Vogt K; Lüscher HR; Müller L; Senn W; Wyler K; Streit J
    Biophys J; 1996 Nov; 71(5):2413-26. PubMed ID: 8913582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parametric spectral analysis of nonstationary fluctuations of excitatory synaptic currents.
    Glavinović MI; Gooria P; Aristizabal F; Taghirad H
    Biol Cybern; 2008 Feb; 98(2):145-69. PubMed ID: 18066582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release kinetics, quantal parameters and their modulation during short-term depression at a developing synapse in the rat CNS.
    Taschenberger H; Scheuss V; Neher E
    J Physiol; 2005 Oct; 568(Pt 2):513-37. PubMed ID: 16096340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical description of the activation of multi-state receptors by continuous neurotransmitter signals at brain synapses.
    Uteshev VV; Pennefather PS
    Biophys J; 1997 Mar; 72(3):1127-34. PubMed ID: 9138560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic fusion pore structure and AMPA receptor activation according to Brownian simulation of glutamate diffusion.
    Ventriglia F; Maio VD
    Biol Cybern; 2003 Mar; 88(3):201-9. PubMed ID: 12647227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrodiffusion of synaptic receptors: a mechanism to modify synaptic efficacy?
    Savtchenko LP; Korogod SM; Rusakov DA
    Synapse; 2000 Jan; 35(1):26-38. PubMed ID: 10579805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Independent sources of quantal variability at single glutamatergic synapses.
    Franks KM; Stevens CF; Sejnowski TJ
    J Neurosci; 2003 Apr; 23(8):3186-95. PubMed ID: 12716926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastic fluctuations of the quantal EPSC amplitude in computer simulated excitatory synapses of hippocampus.
    Ventriglia F; Di Maio V
    Biosystems; 2003 Sep; 71(1-2):195-204. PubMed ID: 14568220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lysosomal dysfunction produces distinct alterations in synaptic alpha-amino-3-hydroxy-5-methylisoxazolepropionic acid and N-methyl-D-aspartate receptor currents in hippocampus.
    Kanju PM; Parameshwaran K; Vaithianathan T; Sims CM; Huggins K; Bendiske J; Ryzhikov S; Bahr BA; Suppiramaniam V
    J Neuropathol Exp Neurol; 2007 Sep; 66(9):779-88. PubMed ID: 17805008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents.
    Lester RA; Clements JD; Westbrook GL; Jahr CE
    Nature; 1990 Aug; 346(6284):565-7. PubMed ID: 1974037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.