These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 9914469)

  • 1. Molecular mechanisms and regulation of insulin exocytosis as a paradigm of endocrine secretion.
    Lang J
    Eur J Biochem; 1999 Jan; 259(1-2):3-17. PubMed ID: 9914469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca2+-independent insulin exocytosis induced by alpha-latrotoxin requires latrophilin, a G protein-coupled receptor.
    Lang J; Ushkaryov Y; Grasso A; Wollheim CB
    EMBO J; 1998 Feb; 17(3):648-57. PubMed ID: 9450990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct control of exocytosis by receptor-mediated activation of the heterotrimeric GTPases Gi and G(o) or by the expression of their active G alpha subunits.
    Lang J; Nishimoto I; Okamoto T; Regazzi R; Kiraly C; Weller U; Wollheim CB
    EMBO J; 1995 Aug; 14(15):3635-44. PubMed ID: 7641683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intragranular targeting of syncollin, but not a syncollinGFP chimera, inhibits regulated insulin exocytosis in pancreatic beta-cells.
    Hays LB; Wicksteed B; Wang Y; McCuaig JF; Philipson LH; Edwardson JM; Rhodes CJ
    J Endocrinol; 2005 Apr; 185(1):57-67. PubMed ID: 15817827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple sites of purinergic control of insulin secretion in mouse pancreatic beta-cells.
    Poulsen CR; Bokvist K; Olsen HL; Høy M; Capito K; Gilon P; Gromada J
    Diabetes; 1999 Nov; 48(11):2171-81. PubMed ID: 10535451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A low-affinity Ca2+-dependent association of calmodulin with the Rab3A effector domain inversely correlates with insulin exocytosis.
    Kajio H; Olszewski S; Rosner PJ; Donelan MJ; Geoghegan KF; Rhodes CJ
    Diabetes; 2001 Sep; 50(9):2029-39. PubMed ID: 11522668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rab3A effector domain peptides induce insulin exocytosis via a specific interaction with a cytosolic protein doublet.
    Olszewski S; Deeney JT; Schuppin GT; Williams KP; Corkey BE; Rhodes CJ
    J Biol Chem; 1994 Nov; 269(45):27987-91. PubMed ID: 7961732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose-stimulated signaling pathways in biphasic insulin secretion.
    Straub SG; Sharp GW
    Diabetes Metab Res Rev; 2002; 18(6):451-63. PubMed ID: 12469359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localized calcium influx in pancreatic beta-cells: its significance for Ca2+-dependent insulin secretion from the islets of Langerhans.
    Satin LS
    Endocrine; 2000 Dec; 13(3):251-62. PubMed ID: 11216635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel regulatory mechanism for trimeric GTP-binding proteins in the membrane and secretory granule fractions of human and rodent beta cells.
    Kowluru A; Seavey SE; Rhodes CJ; Metz SA
    Biochem J; 1996 Jan; 313 ( Pt 1)(Pt 1):97-107. PubMed ID: 8546716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rim2alpha determines docking and priming states in insulin granule exocytosis.
    Yasuda T; Shibasaki T; Minami K; Takahashi H; Mizoguchi A; Uriu Y; Numata T; Mori Y; Miyazaki J; Miki T; Seino S
    Cell Metab; 2010 Aug; 12(2):117-29. PubMed ID: 20674857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+-secretion coupling is impaired in diabetic Goto Kakizaki rats.
    Rose T; Efendic S; Rupnik M
    J Gen Physiol; 2007 Jun; 129(6):493-508. PubMed ID: 17535961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose stimulates islet beta-cell mitogenesis through GTP-binding proteins and by protein kinase C-dependent mechanisms.
    Sjöholm A
    Diabetes; 1997 Jul; 46(7):1141-7. PubMed ID: 9200648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulus-secretion coupling in pancreatic beta cells.
    Ashcroft FM; Proks P; Smith PA; Ammälä C; Bokvist K; Rorsman P
    J Cell Biochem; 1994; 55 Suppl():54-65. PubMed ID: 7929618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathways in beta-cell stimulus-secretion coupling as targets for therapeutic insulin secretagogues.
    Henquin JC
    Diabetes; 2004 Dec; 53 Suppl 3():S48-58. PubMed ID: 15561921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperinsulinism of infancy: the regulated release of insulin by KATP channel-independent pathways.
    Straub SG; Cosgrove KE; Ammälä C; Shepherd RM; O'Brien RE; Barnes PD; Kuchinski N; Chapman JC; Schaeppi M; Glaser B; Lindley KJ; Sharp GW; Aynsley-Green A; Dunne MJ
    Diabetes; 2001 Feb; 50(2):329-39. PubMed ID: 11272144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insights into the molecular mechanisms of priming of insulin exocytosis.
    Kwan EP; Gaisano HY
    Diabetes Obes Metab; 2007 Nov; 9 Suppl 2():99-108. PubMed ID: 17919184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mammalian exocyst complex is required for the docking step of insulin vesicle exocytosis.
    Tsuboi T; Ravier MA; Xie H; Ewart MA; Gould GW; Baldwin SA; Rutter GA
    J Biol Chem; 2005 Jul; 280(27):25565-70. PubMed ID: 15878854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beta-granule transport and exocytosis.
    Easom RA
    Semin Cell Dev Biol; 2000 Aug; 11(4):253-66. PubMed ID: 10966859
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.