BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 9914513)

  • 1. ATP hydrolysis induces an intermediate conformational state in GroEL.
    Galán A; Llorca O; Valpuesta JM; Pérez-Pérez J; Carrascosa JL; Menéndez M; Bañuelos S; Muga A
    Eur J Biochem; 1999 Jan; 259(1-2):347-55. PubMed ID: 9914513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide binding to the chaperonin GroEL: non-cooperative binding of ATP analogs and ADP, and cooperative effect of ATP.
    Inobe T; Makio T; Takasu-Ishikawa E; Terada TP; Kuwajima K
    Biochim Biophys Acta; 2001 Feb; 1545(1-2):160-73. PubMed ID: 11342042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational changes in the GroEL oligomer during the functional cycle.
    Llorca O; Marco S; Carrascosa JL; Valpuesta JM
    J Struct Biol; 1997 Feb; 118(1):31-42. PubMed ID: 9087913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A monomeric variant of GroEL binds nucleotides but is inactive as a molecular chaperone.
    White ZW; Fisher KE; Eisenstein E
    J Biol Chem; 1995 Sep; 270(35):20404-9. PubMed ID: 7657615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP hydrolysis is critical for induction of conformational changes in GroEL that expose hydrophobic surfaces.
    Gorovits BM; Ybarra J; Horowitz PM
    J Biol Chem; 1997 Mar; 272(11):6842-5. PubMed ID: 9054367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational changes generated in GroEL during ATP hydrolysis as seen by time-resolved infrared spectroscopy.
    von Germar F; Galán A; Llorca O; Carrascosa JL; Valpuesta JM; Mäntele W; Muga A
    J Biol Chem; 1999 Feb; 274(9):5508-13. PubMed ID: 10026164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleotide-induced transition of GroEL from the high-affinity to the low-affinity state for a target protein: effects of ATP and ADP on the GroEL-affected refolding of alpha-lactalbumin.
    Makio T; Takasu-Ishikawa E; Kuwajima K
    J Mol Biol; 2001 Sep; 312(3):555-67. PubMed ID: 11563916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A kinetic analysis of the nucleotide-induced allosteric transitions of GroEL.
    Cliff MJ; Kad NM; Hay N; Lund PA; Webb MR; Burston SG; Clarke AR
    J Mol Biol; 1999 Oct; 293(3):667-84. PubMed ID: 10543958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetry, commitment and inhibition in the GroE ATPase cycle impose alternating functions on the two GroEL rings.
    Kad NM; Ranson NA; Cliff MJ; Clarke AR
    J Mol Biol; 1998 Apr; 278(1):267-78. PubMed ID: 9571049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic fluorescence studies of the chaperonin GroEL containing single Tyr --> Trp replacements reveal ligand-induced conformational changes.
    Gibbons DL; Hixson JD; Hay N; Lund P; Gorovits BM; Ybarra J; Horowitz PM
    J Biol Chem; 1996 Dec; 271(50):31989-95. PubMed ID: 8943246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The allosteric transition of GroEL induced by metal fluoride-ADP complexes.
    Inobe T; Kikushima K; Makio T; Arai M; Kuwajima K
    J Mol Biol; 2003 May; 329(1):121-34. PubMed ID: 12742022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of chaperonin action: GroES binding and release can drive GroEL-mediated protein folding in the absence of ATP hydrolysis.
    Hayer-Hartl MK; Weber F; Hartl FU
    EMBO J; 1996 Nov; 15(22):6111-21. PubMed ID: 8947033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL.
    Rye HS; Burston SG; Fenton WA; Beechem JM; Xu Z; Sigler PB; Horwich AL
    Nature; 1997 Aug; 388(6644):792-8. PubMed ID: 9285593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast-scanning atomic force microscopy reveals the ATP/ADP-dependent conformational changes of GroEL.
    Yokokawa M; Wada C; Ando T; Sakai N; Yagi A; Yoshimura SH; Takeyasu K
    EMBO J; 2006 Oct; 25(19):4567-76. PubMed ID: 16977315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chaperonin GroEL is destabilized by binding of ADP.
    Gorovits BM; Horowitz PM
    J Biol Chem; 1995 Dec; 270(48):28551-6. PubMed ID: 7499369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing open conformation of GroEL rings by cross-linking reveals single and double open ring structures of GroEL in ADP and ATP.
    Nojima T; Yoshida M
    J Biol Chem; 2009 Aug; 284(34):22834-9. PubMed ID: 19520865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient kinetic analysis of adenosine 5'-triphosphate binding-induced conformational changes in the allosteric chaperonin GroEL.
    Yifrach O; Horovitz A
    Biochemistry; 1998 May; 37(20):7083-8. PubMed ID: 9585518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligands regulate GroEL thermostability.
    Surin AK; Kotova NV; Kashparov IA; Marchenkov VV; Marchenkova SYu ; Semisotnov GV
    FEBS Lett; 1997 Apr; 405(3):260-2. PubMed ID: 9108300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ATPase activity of GroEL is supported at high temperatures by divalent cations that stabilize its structure.
    Melkani GC; Zardeneta G; Mendoza JA
    Biometals; 2003 Sep; 16(3):479-84. PubMed ID: 12680712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential scanning calorimetry study of glycerinated rabbit psoas muscle fibres in intermediate state of ATP hydrolysis.
    Dergez T; Lorinczy D; Könczöl F; Farkas N; Belagyi J
    BMC Struct Biol; 2007 Jun; 7():41. PubMed ID: 17588264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.