These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 9914534)
1. The gelatin-binding site of the second type-II domain of gelatinase A/MMP-2. Tordai H; Patthy L Eur J Biochem; 1999 Jan; 259(1-2):513-8. PubMed ID: 9914534 [TBL] [Abstract][Full Text] [Related]
2. Structure and domain-domain interactions of the gelatin binding site of human 72-kilodalton type IV collagenase (gelatinase A, matrix metalloproteinase 2). Bányai L; Tordai H; Patthty L J Biol Chem; 1996 May; 271(20):12003-8. PubMed ID: 8662603 [TBL] [Abstract][Full Text] [Related]
3. Solution structure of a type 2 module from fibronectin: implications for the structure and function of the gelatin-binding domain. Pickford AR; Potts JR; Bright JR; Phan I; Campbell ID Structure; 1997 Mar; 5(3):359-70. PubMed ID: 9083105 [TBL] [Abstract][Full Text] [Related]
4. The gelatin-binding site of human 72 kDa type IV collagenase (gelatinase A). Bányai L; Tordai H; Patthy L Biochem J; 1994 Mar; 298 ( Pt 2)(Pt 2):403-7. PubMed ID: 8135748 [TBL] [Abstract][Full Text] [Related]
5. Gelatin binding to the 6F1(1)F2(2)F2 fragment of fibronectin is independent of module-module interactions. Pagett A; Campbell ID; Pickford AR Biochemistry; 2005 Nov; 44(44):14682-7. PubMed ID: 16262267 [TBL] [Abstract][Full Text] [Related]
6. The col-1 module of human matrix metalloproteinase-2 (MMP-2): structural/functional relatedness between gelatin-binding fibronectin type II modules and lysine-binding kringle domains. Gehrmann M; Briknarová K; Bányai L; Patthy L; Llinás M Biol Chem; 2002 Jan; 383(1):137-48. PubMed ID: 11928808 [TBL] [Abstract][Full Text] [Related]
7. Identification of the tissue inhibitor of metalloproteinases-2 (TIMP-2) binding site on the hemopexin carboxyl domain of human gelatinase A by site-directed mutagenesis. The hierarchical role in binding TIMP-2 of the unique cationic clusters of hemopexin modules III and IV. Overall CM; King AE; Sam DK; Ong AD; Lau TT; Wallon UM; DeClerck YA; Atherstone J J Biol Chem; 1999 Feb; 274(7):4421-9. PubMed ID: 9933646 [TBL] [Abstract][Full Text] [Related]
8. Assessment of the role of the fibronectin-like domain of gelatinase A by analysis of a deletion mutant. Murphy G; Nguyen Q; Cockett MI; Atkinson SJ; Allan JA; Knight CG; Willenbrock F; Docherty AJ J Biol Chem; 1994 Mar; 269(9):6632-6. PubMed ID: 8120015 [TBL] [Abstract][Full Text] [Related]
9. Neutrophil elastase processing of gelatinase A is mediated by extracellular matrix. Rice A; Banda MJ Biochemistry; 1995 Jul; 34(28):9249-56. PubMed ID: 7619826 [TBL] [Abstract][Full Text] [Related]
10. Interaction of the NH2-terminal domain of fibronectin with heparin. Role of the omega-loops of the type I modules. Kishore R; Samuel M; Khan MY; Hand J; Frenz DA; Newman SA J Biol Chem; 1997 Jul; 272(27):17078-85. PubMed ID: 9202024 [TBL] [Abstract][Full Text] [Related]
11. Comparison of cleavage site specificity of gelatinases A and B using collagenous peptides. Xia T; Akers K; Eisen AZ; Seltzer JL Biochim Biophys Acta; 1996 Apr; 1293(2):259-66. PubMed ID: 8620038 [TBL] [Abstract][Full Text] [Related]
12. All six modules of the gelatin-binding domain of fibronectin are required for full affinity. Katagiri Y; Brew SA; Ingham KC J Biol Chem; 2003 Apr; 278(14):11897-902. PubMed ID: 12538576 [TBL] [Abstract][Full Text] [Related]
13. Heparin binding by fibronectin module III-13 involves six discontinuous basic residues brought together to form a cationic cradle. Busby TF; Argraves WS; Brew SA; Pechik I; Gilliland GL; Ingham KC J Biol Chem; 1995 Aug; 270(31):18558-62. PubMed ID: 7629186 [TBL] [Abstract][Full Text] [Related]
14. Functional methionines in the collagen/gelatin binding domain of plasma fibronectin: effects of chemical modification by chloramine T. Miles AM; Smith RL Biochemistry; 1993 Aug; 32(32):8168-78. PubMed ID: 8347617 [TBL] [Abstract][Full Text] [Related]
15. Functional mimetic peptide discovery isolated by phage display interacts selectively to fibronectin domain and inhibits gelatinase. Shoari A; Rasaee MJ; Kanavi MR; Daraei B J Cell Biochem; 2019 Dec; 120(12):19699-19711. PubMed ID: 31270859 [TBL] [Abstract][Full Text] [Related]
16. Gelatin binding to the 8F19F1 module pair of human fibronectin requires site-specific N-glycosylation. Millard CJ; Campbell ID; Pickford AR FEBS Lett; 2005 Aug; 579(20):4529-34. PubMed ID: 16083879 [TBL] [Abstract][Full Text] [Related]
17. A 70-kDa amino-terminal fibronectin fragment supports gelatin binding to macrophages and decreases gelatinase activity. Penc SF; Blumenstock FA; Kaplan JE J Leukoc Biol; 1998 Sep; 64(3):351-7. PubMed ID: 9738662 [TBL] [Abstract][Full Text] [Related]
18. Solution structure of a pair of modules from the gelatin-binding domain of fibronectin. Bocquier AA; Potts JR; Pickford AR; Campbell ID Structure; 1999 Dec; 7(12):1451-60. PubMed ID: 10647176 [TBL] [Abstract][Full Text] [Related]
19. Mutation of the active site glutamic acid of human gelatinase A: effects on latency, catalysis, and the binding of tissue inhibitor of metalloproteinases-1. Crabbe T; Zucker S; Cockett MI; Willenbrock F; Tickle S; O'Connell JP; Scothern JM; Murphy G; Docherty AJ Biochemistry; 1994 May; 33(21):6684-90. PubMed ID: 7911325 [TBL] [Abstract][Full Text] [Related]
20. Peptide ligands for the fibronectin type II modules of matrix metalloproteinase 2 (MMP-2). Trexler M; Briknarová K; Gehrmann M; Llinás M; Patthy L J Biol Chem; 2003 Apr; 278(14):12241-6. PubMed ID: 12486137 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]