BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 9914534)

  • 1. The gelatin-binding site of the second type-II domain of gelatinase A/MMP-2.
    Tordai H; Patthy L
    Eur J Biochem; 1999 Jan; 259(1-2):513-8. PubMed ID: 9914534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and domain-domain interactions of the gelatin binding site of human 72-kilodalton type IV collagenase (gelatinase A, matrix metalloproteinase 2).
    Bányai L; Tordai H; Patthty L
    J Biol Chem; 1996 May; 271(20):12003-8. PubMed ID: 8662603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution structure of a type 2 module from fibronectin: implications for the structure and function of the gelatin-binding domain.
    Pickford AR; Potts JR; Bright JR; Phan I; Campbell ID
    Structure; 1997 Mar; 5(3):359-70. PubMed ID: 9083105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The gelatin-binding site of human 72 kDa type IV collagenase (gelatinase A).
    Bányai L; Tordai H; Patthy L
    Biochem J; 1994 Mar; 298 ( Pt 2)(Pt 2):403-7. PubMed ID: 8135748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gelatin binding to the 6F1(1)F2(2)F2 fragment of fibronectin is independent of module-module interactions.
    Pagett A; Campbell ID; Pickford AR
    Biochemistry; 2005 Nov; 44(44):14682-7. PubMed ID: 16262267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The col-1 module of human matrix metalloproteinase-2 (MMP-2): structural/functional relatedness between gelatin-binding fibronectin type II modules and lysine-binding kringle domains.
    Gehrmann M; Briknarová K; Bányai L; Patthy L; Llinás M
    Biol Chem; 2002 Jan; 383(1):137-48. PubMed ID: 11928808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the tissue inhibitor of metalloproteinases-2 (TIMP-2) binding site on the hemopexin carboxyl domain of human gelatinase A by site-directed mutagenesis. The hierarchical role in binding TIMP-2 of the unique cationic clusters of hemopexin modules III and IV.
    Overall CM; King AE; Sam DK; Ong AD; Lau TT; Wallon UM; DeClerck YA; Atherstone J
    J Biol Chem; 1999 Feb; 274(7):4421-9. PubMed ID: 9933646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the role of the fibronectin-like domain of gelatinase A by analysis of a deletion mutant.
    Murphy G; Nguyen Q; Cockett MI; Atkinson SJ; Allan JA; Knight CG; Willenbrock F; Docherty AJ
    J Biol Chem; 1994 Mar; 269(9):6632-6. PubMed ID: 8120015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neutrophil elastase processing of gelatinase A is mediated by extracellular matrix.
    Rice A; Banda MJ
    Biochemistry; 1995 Jul; 34(28):9249-56. PubMed ID: 7619826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of the NH2-terminal domain of fibronectin with heparin. Role of the omega-loops of the type I modules.
    Kishore R; Samuel M; Khan MY; Hand J; Frenz DA; Newman SA
    J Biol Chem; 1997 Jul; 272(27):17078-85. PubMed ID: 9202024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of cleavage site specificity of gelatinases A and B using collagenous peptides.
    Xia T; Akers K; Eisen AZ; Seltzer JL
    Biochim Biophys Acta; 1996 Apr; 1293(2):259-66. PubMed ID: 8620038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All six modules of the gelatin-binding domain of fibronectin are required for full affinity.
    Katagiri Y; Brew SA; Ingham KC
    J Biol Chem; 2003 Apr; 278(14):11897-902. PubMed ID: 12538576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heparin binding by fibronectin module III-13 involves six discontinuous basic residues brought together to form a cationic cradle.
    Busby TF; Argraves WS; Brew SA; Pechik I; Gilliland GL; Ingham KC
    J Biol Chem; 1995 Aug; 270(31):18558-62. PubMed ID: 7629186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional methionines in the collagen/gelatin binding domain of plasma fibronectin: effects of chemical modification by chloramine T.
    Miles AM; Smith RL
    Biochemistry; 1993 Aug; 32(32):8168-78. PubMed ID: 8347617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional mimetic peptide discovery isolated by phage display interacts selectively to fibronectin domain and inhibits gelatinase.
    Shoari A; Rasaee MJ; Kanavi MR; Daraei B
    J Cell Biochem; 2019 Dec; 120(12):19699-19711. PubMed ID: 31270859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gelatin binding to the 8F19F1 module pair of human fibronectin requires site-specific N-glycosylation.
    Millard CJ; Campbell ID; Pickford AR
    FEBS Lett; 2005 Aug; 579(20):4529-34. PubMed ID: 16083879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 70-kDa amino-terminal fibronectin fragment supports gelatin binding to macrophages and decreases gelatinase activity.
    Penc SF; Blumenstock FA; Kaplan JE
    J Leukoc Biol; 1998 Sep; 64(3):351-7. PubMed ID: 9738662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution structure of a pair of modules from the gelatin-binding domain of fibronectin.
    Bocquier AA; Potts JR; Pickford AR; Campbell ID
    Structure; 1999 Dec; 7(12):1451-60. PubMed ID: 10647176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutation of the active site glutamic acid of human gelatinase A: effects on latency, catalysis, and the binding of tissue inhibitor of metalloproteinases-1.
    Crabbe T; Zucker S; Cockett MI; Willenbrock F; Tickle S; O'Connell JP; Scothern JM; Murphy G; Docherty AJ
    Biochemistry; 1994 May; 33(21):6684-90. PubMed ID: 7911325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide ligands for the fibronectin type II modules of matrix metalloproteinase 2 (MMP-2).
    Trexler M; Briknarová K; Gehrmann M; Llinás M; Patthy L
    J Biol Chem; 2003 Apr; 278(14):12241-6. PubMed ID: 12486137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.