BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 9915371)

  • 1. Muscle fatigue from intermittent stimulation with low and high frequency electrical pulses.
    Matsunaga T; Shimada Y; Sato K
    Arch Phys Med Rehabil; 1999 Jan; 80(1):48-53. PubMed ID: 9915371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of muscle fatigue by catchlike-inducing intermittent electrical stimulation in rat skeletal muscle.
    Shimada Y; Ito H; Matsunaga T; Misawa A; Kawatani M; Itoi E
    Biomed Res; 2006 Aug; 27(4):183-9. PubMed ID: 16971771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue of paralyzed and control thenar muscles induced by variable or constant frequency stimulation.
    Thomas CK; Griffin L; Godfrey S; Ribot-Ciscar E; Butler JE
    J Neurophysiol; 2003 Apr; 89(4):2055-64. PubMed ID: 12611940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanomyography-Based Wearable Monitor of Quasi-Isometric Muscle Fatigue for Motor Neural Prostheses.
    Krueger E; Popović-Maneski L; Nohama P
    Artif Organs; 2018 Feb; 42(2):208-218. PubMed ID: 28762503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The validity of stimulus-evoked EMG for studying muscle fatigue characteristics of paraplegic subjects during dynamic cycling movement.
    Chen JJ; Yu NY
    IEEE Trans Rehabil Eng; 1997 Jun; 5(2):170-8. PubMed ID: 9184903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of random modulation of functional electrical stimulation parameters on muscle fatigue.
    Graham GM; Thrasher TA; Popovic MR
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):38-45. PubMed ID: 16562630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of electrical stimulation parameters on fatigue in skeletal muscle.
    Gorgey AS; Black CD; Elder CP; Dudley GA
    J Orthop Sports Phys Ther; 2009 Sep; 39(9):684-92. PubMed ID: 19721215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicted and measured muscle forces after recoveries of differing durations following fatigue in functional electrical stimulation.
    Mizrahi J; Seelenfreund D; Isakov E; Susak Z
    Artif Organs; 1997 Mar; 21(3):236-9. PubMed ID: 9148714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitigation of excessive fatigue associated with functional electrical stimulation.
    Buckmire AJ; Arakeri TJ; Reinhard JP; Fuglevand AJ
    J Neural Eng; 2018 Dec; 15(6):066004. PubMed ID: 30168443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A neuro-sliding-mode control with adaptive modeling of uncertainty for control of movement in paralyzed limbs using functional electrical stimulation.
    Ajoudani A; Erfanian A
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1771-80. PubMed ID: 19336284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully automatic control of paraplegic FES pedaling using higher-order sliding mode and fuzzy logic control.
    Farhoud A; Erfanian A
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):533-42. PubMed ID: 24760923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distributed low-frequency functional electrical stimulation delays muscle fatigue compared to conventional stimulation.
    Malesević NM; Popović LZ; Schwirtlich L; Popović DB
    Muscle Nerve; 2010 Oct; 42(4):556-62. PubMed ID: 20665516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical stimulation of human tibialis anterior: (A) contractile properties are stable over a range of submaximal voltages; (B) high- and low-frequency fatigue are inducible and reliably assessable at submaximal voltages.
    Hanchard NC; Williamson M; Caley RW; Cooper RG
    Clin Rehabil; 1998 Oct; 12(5):413-27. PubMed ID: 9796932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quadriceps femoris muscle torques and fatigue generated by neuromuscular electrical stimulation with three different waveforms.
    Laufer Y; Ries JD; Leininger PM; Alon G
    Phys Ther; 2001 Jul; 81(7):1307-16. PubMed ID: 11444994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of frequency and pulse duration on human muscle fatigue during repetitive electrical stimulation.
    Kesar T; Binder-Macleod S
    Exp Physiol; 2006 Nov; 91(6):967-76. PubMed ID: 16873456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical experience of functional electrical stimulation in complete paraplegia.
    Shimada Y; Sato K; Abe E; Kagaya H; Ebata K; Oba M; Sato M
    Spinal Cord; 1996 Oct; 34(10):615-9. PubMed ID: 8896129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation.
    Hayashibe M; Zhang Q; Guiraud D; Fattal C
    J Neural Eng; 2011 Dec; 8(6):064001. PubMed ID: 21975831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanomyography energy decreases during muscular fatigue in paraplegics.
    Krueger E; Scheeren EM; Nogueira-Neto GN; Nohama P
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5824-7. PubMed ID: 25571320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of electrical stimulation frequency on skeletal muscle force and fatigue.
    Dreibati B; Lavet C; Pinti A; Poumarat G
    Ann Phys Rehabil Med; 2010 May; 53(4):266-71, 271-7. PubMed ID: 20430713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-distributed low-frequency asynchronous stimulation delays fatigue of stimulated muscles.
    Maneski LZ; Malešević NM; Savić AM; Keller T; Popović DB
    Muscle Nerve; 2013 Dec; 48(6):930-7. PubMed ID: 23512421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.